scholarly journals Exploring the 2’-Hydroxy-Chalcone Framework for the Development of Dual Antioxidant and Soybean Lipoxygenase Inhibitory Agents

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2777
Author(s):  
Ioanna Kostopoulou ◽  
Andromachi Tzani ◽  
Nestor-Ioannis Polyzos ◽  
Maria-Anna Karadendrou ◽  
Eftichia Kritsi ◽  
...  

2’-hydroxy-chalcones are naturally occurring compounds with a wide array of bioactivity. In an effort to delineate the structural features that favor antioxidant and lipoxygenase (LOX) inhibitory activity, the design, synthesis, and bioactivity profile of a series of 2’-hydroxy-chalcones bearing diverse substituents on rings A and B, are presented. Among all the synthesized derivatives, chalcone 4b, bearing two hydroxyl substituents on ring B, was found to possess the best combined activity (82.4% DPPH radical scavenging ability, 82.3% inhibition of lipid peroxidation, and satisfactory LOX inhibition value (IC50 = 70 μM). Chalcone 3c, possessing a methoxymethylene substituent on ring A, and three methoxy groups on ring B, exhibited the most promising LOX inhibitory activity (IC50 = 45 μM). A combination of in silico techniques were utilized in an effort to explore the crucial binding characteristics of the most active compound 3c and its analogue 3b, to LOX. Α common H-bond interaction pattern, orienting the hydroxyl and carbonyl groups of the aromatic ring A towards Asp768 and Asn128, respectively, was observed. Regarding the analogue 3c, the bulky (-OMOM) group does not seem to participate in a direct binding, but it induces an orientation capable to form H-bonds between the methoxy groups of the aromatic ring B with Trp130 and Gly247.

2021 ◽  
Vol 33 (6) ◽  
pp. 1396-1402
Author(s):  
Somepalli Venkateswarlu ◽  
Gandrotu Narasimha Murty ◽  
Meka Satyanarayana ◽  
Vidavalur Siddaiah

To widen aurones applicability in achromatic food and cosmetic applications, a series of dihydroaurones were designed to mimic natural aurones as well as synthetic aurones. Dihydroaurones have been synthesized from the corresponding aurones by hydrogenation. These dihydroaurones and their corresponding aurones were screened for antioxidant, anti-inflammatory and tyrosinase enzyme inhibitory activity. Synthesized dihydroaurones (3b-f) displayed superior antioxidant activity in superoxide free radical scavenging assay than the standard gallic acid. Dihydroaurones (3b-f) also exhibited significant tyrosinase enzyme inhibitory activity and two dihydroaurones (3h, 3j) showed promising 5-lipoxygenase inhibitory activity.


2021 ◽  
Vol 27 (6) ◽  
pp. 1447-1452
Author(s):  
Hye-Jin Park ◽  
Eun-Jeong Jeong

This study intends to present the value of use as an eco-friendly, bioactive functional material by utilizing the undervalued tapiocaunhulled barley dried distiller's grains with solubles (TBDDGS). The physiological activity of TBDDGS presented through whitening activity, antioxidant activity, and anti-wrinkle effect. As a result of measuring the mushroom tyrosinase inhibitory activity in the hot water extracts of TBDDGS, the extracts showed 1.21% at 20 mg/mL concentration, 7.39% at 50 mg/mL concentration, and 25.78% at 100 mg/mL concentration, depending on the concentration of the extracts. The radical scavenging ability of DPPH was 28.7% at 10 mg/mL concentration, 38.0% at 20 mg/mL concentration, 60.9% at 50 mg/mL concentration, and 80.1% at 100 mg/mL concentration. The collagenase inhibitory activity of the extracts was 92.8% at a 6 mg/mL concentration. Elastase inhibitory activity was 97.8% at 100 mg/mL concentration. From the above results, the collagenase inhibitory activity of the extracts was 92.8% at a 6 mg/mL concentration. The elastase inhibitory activity was 97.8% at 100 mg/mL concentration. Although TBDDGS in this study has lower physiological activity compared to the control group, it was considered to have industrial value as a functional cosmetic raw material in consideration of the advantages of stable raw material supply and price competitiveness as an eco-friendly cosmetic raw material.


2020 ◽  
Vol 4 (2) ◽  
pp. 605-614
Author(s):  
Murtala M. Namadina ◽  
H. Haruna ◽  
U. Sanusi

Most of biochemical reactions in the body generates Reactive Oxygen Species (ROS), which are involved in the pathogenesis of oxidative stress-related disorders like diabetes, nephrotoxicity, cancer, cardiovascular disorders, inflammation and neurological disorders when they attack biochemical molecules like proteins, lipids and nucleic acid. Antioxidants are used to protect the cells or tissues against potential attack by ROS. Most medicinal plants possess a rich source of antioxidants such as flavonoids, phenols, tannins, alkaloids among others. These phytochemicals are currently pursued as an alternative and complimentary drug. In this study, phytochemical components, antioxidant and acute toxicity study of the methanol extract of stem bark and root of F. sycomorus were carried out using standard methods. Findings from this study revealed the presence of some diagnostic microscopical features such as calcium oxalate, starch, gum/mucilage, lignin, Aleurone grain, suberized/Cuticular cell wall and inulin but calcium carbonate was absent in stem bark but present in the powdered root. Quantitative physical constants include moisture contents (6.40% and 7.82%), ash value (7.20% and 9.30 %) in stem bark and root respectively. Carbohydrates, alkaloid, flavonoids, saponins, tannins, glycoside, steroid, triterpenes and phenols were present in all the extracts. They were found to exhibit potent 1,1,-diphenyl 2-picryl hydrazyl (DPPH) free scavenging activity. The DPPH radical scavenging ability of the extracts showed the following trend Ascorbic acid < stem bark extract˃ root extract. The LD50 of the methanolic stem bark and root extracts were found to be greater than 5000 mg /kg and is considered safe for use. Nonetheless, further


2019 ◽  
Vol 16 (10) ◽  
pp. 837-845
Author(s):  
Sandhya Jonnala ◽  
Bhaskar Nameta ◽  
Murthy Chavali ◽  
Rajashaker Bantu ◽  
Pallavi Choudante ◽  
...  

A class of 1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)naphthalen-2-ol derivatives (4a-t) has been synthesized in good yields through a three component coupling reaction. The newly synthesized compounds were evaluated for their in vitro antiproliferative activity against five cell lines such as DU145 (human prostate cancer), MDA-MB-B231 (human breast cancer), SKOV3 (human ovarian cancer), B16-F10 (mouse skin melanoma) and CHO-K1 (Chinese hamster ovary cells), a noncancerous cell line. In vitro inhibitory activity indicates that compounds 4a, 4b, 4c, 4d, 4g, 4j, and 4o exhibited potent anti-proliferative behavior. Among them, compounds 4g, 4j and 4o found to be the most active members exhibiting remarkable growth inhibitory activity. Molecular docking facilitates to investigate the probable binding mode and key active site interactions in tubulins α and β proteins. The docking results are complementary to experimental results.


Author(s):  
Reema Abu Khalaf ◽  
Shorooq Alqazaqi ◽  
Maram Aburezeq ◽  
Dima Sabbah ◽  
Ghadeer Albadawi ◽  
...  

Background: Diabetes mellitus is a chronic metabolic disorder, characterized by hyperglycemia over a prolonged period, disturbance of fat, protein and carbohydrate metabolism, resulting from defective insulin secretion, insulin action or both. Dipeptidyl peptidase-IV (DPP-IV) inhibitors are relatively a new class of oral hypoglycemic agents that reduces the deterioration of gut-derived endogenous incretin hormones that are secreted in response to food ingestion to stimulate the secretion of insulin from beta cells of pancreas. Objective: In this study, synthesis, characterization, and biological assessment of twelve novel phenanthridine sulfonamide derivatives 3a-3l as potential DPP-IV inhibitors was carried out. The target compounds were docked to study the molecular interactions and binding affinities against DPP-IV enzyme. Methods: The synthesized molecules were characterized using 1H-NMR, 13C-NMR, IR, and MS. Quantum-polarized ligand docking (QPLD) was also performed. Results: In vitro biological evaluation of compounds 3a-3l reveals comparable DPP-IV inhibitory activities ranging from 10%-46% at 100 µM concentration, where compound 3d harboring ortho-fluoro moiety exhibited the highest inhibitory activity. QPLD study shows that compounds 3a-3l accommodate DPP-IV binding site and form H-bonding with the R125, E205, E206, S209, F357, R358, K554, W629, S630, Y631, Y662, R669 and Y752 backbones. Conclusion: In conclusion, phenanthridine sulfonamides could serve as potential DPP-IV inhibitors that require further structural optimization in order to enhance their inhibitory activity.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 53
Author(s):  
Sicong Chen ◽  
Xunfan Wei ◽  
Zhuoxiao Sui ◽  
Mengyuan Guo ◽  
Jin Geng ◽  
...  

Among different insects, the American cockroach (Periplaneta americana) has been bred in industrial scale successfully as a potential resource of protein, lipid, and antibacterial peptide. However, the application of its chitosan has not been studied widely, which has hindered the sufficient utilization of P. americana. In this paper, the chitosan from P. americana was separated, characterized, and processed into film (PaCSF) to examine its potential of being applied in food packaging. As the results of different characterizations showed, PaCSF was similar to shrimp chitosan film (SCSF). However, concerning the performances relating to food packaging, the two chitosan films were different. PaCSF contained more water (42.82%) than SCSF did, resulting in its larger thickness (0.08 mm). PaCSF could resist UV light more effectively than SCSF did. Concerning antioxidant activity, the DPPH radical scavenging ability of PaCSF increased linearly with time passing, reaching 72.46% after 8 h, which was better than that of SCSF. The antibacterial activity assay exhibited that PaCSF resisted the growth of Serratia marcescens and Escherichia coli more effectively than SCSF did. The results implied that P. americana chitosan could be a potential raw material for food packaging, providing a new way to develop P. americana.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 338
Author(s):  
Andreia Henriques ◽  
José A. Vázquez ◽  
Jesus Valcarcel ◽  
Rogério Mendes ◽  
Narcisa M. Bandarra ◽  
...  

Fish discards and by-products can be transformed into high value-added products such as fish protein hydrolysates (FPH) containing bioactive peptides. Protein hydrolysates were prepared from different parts (whole fish, skin and head) of several discarded species of the North-West Spain fishing fleet using Alcalase. All hydrolysates had moisture and ash contents lower than 10% and 15%, respectively. The fat content of FPH varied between 1.5% and 9.4% and had high protein content (69.8–76.6%). The amino acids profiles of FPH are quite similar and the most abundant amino acids were glutamic and aspartic acids. All FPH exhibited antioxidant activity and those obtained from Atlantic horse mackerel heads presented the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, reducing power and Cu2+ chelating activity. On the other hand, hydrolysates from gurnard heads showed the highest ABTS radical scavenging activity and Fe2+ chelating activity. In what concerns the α-amylase inhibitory activity, the IC50 values recorded for FPH ranged between 5.70 and 84.37 mg/mL for blue whiting heads and whole Atlantic horse mackerel, respectively. α-Glucosidase inhibitory activity of FPH was relatively low but all FPH had high Angiotensin Converting Enzyme (ACE) inhibitory activity. Considering the biological activities, these FPH are potential natural additives for functional foods or nutraceuticals.


Sign in / Sign up

Export Citation Format

Share Document