scholarly journals Langmuir Films of Perfluorinated Fatty Alcohols: Evidence of Spontaneous Formation of Solid Aggregates at Zero Surface Pressure and Very Low Surface Density

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2257 ◽  
Author(s):  
Pedro Silva ◽  
Duarte Nova ◽  
Miguel Teixeira ◽  
Vitória Cardoso ◽  
Pedro Morgado ◽  
...  

In this work, Langmuir films of two highly fluorinated fatty alcohols, CF3(CF2)12CH2OH (F14OH) and CF3(CF2)16CH2OH (F18OH), were studied. Atomic Force Microscopy (AFM) images of the films transferred at zero surface pressure and low surface density onto the surface of silicon wafers by the Langmuir-Blodgett technique revealed, for the first time, the existence of solid-like domains with well-defined mostly hexagonal (starry) shapes in the case of F18OH, and with an entangled structure of threads in the case of F14OH. A (20:80) molar mixture of the two alcohols displayed a surprising combination of the two patterns: hexagonal domains surrounded by zigzagging threads, clearly demonstrating that the two alcohols segregate during the 2D crystallization process. Grazing Incidence X-ray Diffraction (GIXD) measurements confirmed that the molecules of both alcohols organize in 2D hexagonal lattices. Atomistic Molecular Dynamics (MD) simulations provide a visualization of the structure of the domains and allow a molecular-level interpretation of the experimental observations. The simulation results clearly showed that perfluorinated alcohols have an intrinsic tendency to aggregate, even at very low surface density. The formed domains are highly organized compared to those of hydrogenated alcohols with similar chain length. Very probably, this tendency is a consequence of the characteristic stiffness of the perfluorinated chains. The diffraction spectrum calculated from the simulation trajectories compares favorably with the experimental spectra, fully validating the simulations and the proposed interpretation. The present results highlight for the first time an inherent tendency of perfluorinated chains to aggregate, even at very low surface density, forming highly organized 2D structures. We believe these findings are important to fully understand related phenomena, such as the formation of hemi-micelles of semifluorinated alkanes at the surface of water and the 2D segregation in mixed Langmuir films of hydrogenated and fluorinated fatty acids.

2020 ◽  
Vol 20 (15) ◽  
pp. 1857-1872
Author(s):  
Alberto M. Muñoz ◽  
Manuel J. Fragoso-Vázquez ◽  
Berenice P. Martel ◽  
Alma Chávez-Blanco ◽  
Alfonso Dueñas-González ◽  
...  

Background: Our research group has developed some Valproic Acid (VPA) derivatives employed as anti-proliferative compounds targeting the HDAC8 enzyme. However, some of these compounds are poorly soluble in water. Objective: Employed the four generations of Polyamidoamine (G4 PAMAM) dendrimers as drug carriers of these compounds to increase their water solubility for further in vitro evaluation. Methods: VPA derivatives were subjected to Docking and Molecular Dynamics (MD) simulations to evaluate their affinity on G4 PAMAM. Then, HPLC-UV/VIS, 1H NMR, MALDI-TOF and atomic force microscopy were employed to establish the formation of the drug-G4 PAMAM complexes. Results: The docking results showed that the amide groups of VPA derivatives make polar interactions with G4 PAMAM, whereas MD simulations corroborated the stability of the complexes. HPLC UV/VIS experiments showed an increase in the drug water solubility which was found to be directly proportional to the amount of G4 PAMAM. 1H NMR showed a disappearance of the proton amine group signals, correlating with docking results. MALDI-TOF and atomic force microscopy suggested the drug-G4 PAMAM dendrimer complexes formation. Discussion: In vitro studies showed that G4 PAMAM has toxicity in the micromolar concentration in MDAMB- 231, MCF7, and 3T3-L1 cell lines. VPA CF-G4 PAMAM dendrimer complex showed anti-proliferative properties in the micromolar concentration in MCF-7 and 3T3-L1, and in the milimolar concentration in MDAMB- 231, whereas VPA MF-G4 PAMAM dendrimer complex didn’t show effects on the three cell lines employed. Conclusion: These results demonstrate that G4 PAMAM dendrimers are capableof transporting poorly watersoluble aryl-VPA derivate compounds to increase its cytotoxic activity against neoplastic cell lines.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1088
Author(s):  
Yuki Gunjo ◽  
Hajime Kamebuchi ◽  
Ryohei Tsuruta ◽  
Masaki Iwashita ◽  
Kana Takahashi ◽  
...  

The structural and electronic properties of interfaces composed of donor and acceptor molecules play important roles in the development of organic opto-electronic devices. Epitaxial growth of organic semiconductor molecules offers a possibility to control the interfacial structures and to explore precise properties at the intermolecular contacts. 5,6,11,12-tetraazanaphthacene (TANC) is an acceptor molecule with a molecular structure similar to that of pentacene, a representative donor material, and thus, good compatibility with pentacene is expected. In this study, the physicochemical properties of the molecular interface between TANC and pentacene single crystal (PnSC) substrates were analyzed by atomic force microscopy, grazing-incidence X-ray diffraction (GIXD), and photoelectron spectroscopy. GIXD revealed that TANC molecules assemble into epitaxial overlayers of the (010) oriented crystallites by aligning an axis where the side edges of the molecules face each other along the [1¯10] direction of the PnSC. No apparent interface dipole was found, and the energy level offset between the highest occupied molecular orbitals of TANC and the PnSC was determined to be 1.75 eV, which led to a charge transfer gap width of 0.7 eV at the interface.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ayse N. Koyun ◽  
Julia Zakel ◽  
Sven Kayser ◽  
Hartmut Stadler ◽  
Frank N. Keutsch ◽  
...  

AbstractSurface microstructures of bitumen are key sites in atmospheric photo-oxidation leading to changes in the mechanical properties and finally resulting in cracking and rutting of the material. Investigations at the nanoscale remain challenging. Conventional combination of optical microscopy and spectroscopy cannot resolve the submicrostructures due to the Abbe restriction. For the first time, we report here respective surface domains, namely catana, peri and para phases, correlated to distinct molecules using combinations of atomic force microscopy with infrared spectroscopy and with correlative time of flight—secondary ion mass spectrometry. Chemical heterogeneities on the surface lead to selective oxidation due to their varying susceptibility to photo-oxidation. It was found, that highly oxidized compounds, are preferentially situated in the para phase, which are mainly asphaltenes, emphasising their high oxidizability. This is an impressive example how chemical visualization allows elucidation of the submicrostructures and explains their response to reactive oxygen species from the atmosphere.


2011 ◽  
Vol 480-481 ◽  
pp. 1065-1069
Author(s):  
Bin Liu ◽  
Lin Wang ◽  
Yin Zhong Bu ◽  
Sheng Rong Yang ◽  
Jin Qing Wang

Titanium (Ti) and its alloys have been applied in orthopedics as one of the most popular biomedical metallic implant materials. In this work, to enhance the bioactivity, the surface of Ti alloy pre-modified by silane coupling agent and glutaraldehyde was covalently grafted with chitosan (CS) via biochemical multistep self-assembled method. Then, for the first time, the achieved surface was further immobilized with casein phosphopeptides (CPP), which are one group of bioactive peptides released from caseins in the digestive tract and can facilitate the calcium adsorption and usage, to form CS-CPP biocomposite coatings. The structure and composition of the fabricated coatings were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscopy (AFM). As the experimental results indicated, multi-step assembly was successfully performed, and the CS and CPP were assembled onto the Ti alloy surface orderly. It is anticipated that the Ti alloys modified by CS-CPP biocomposite coatings will find potential applications as implant materials in biomedical fields.


Biosensors ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 118
Author(s):  
Rodica Ionescu ◽  
Raphael Selon ◽  
Nicolas Pocholle ◽  
Lan Zhou ◽  
Anna Rumyantseva ◽  
...  

Conductive indium-tin oxide (ITO) and non-conductive glass substrates were successfully modified with embedded gold nanoparticles (AuNPs) formed by controlled thermal annealing at 550 °C for 8 h in a preselected oven. The authors characterized the formation of AuNPs using two microscopic techniques: scanning electron microscopy (SEM) and atomic force microscopy (AFM). The analytical performances of the nanostructured-glasses were compared regarding biosensing of Hsp70, an ATP-driven molecular chaperone. In this work, the human heat-shock protein (Hsp70), was chosen as a model biomarker of body stress disorders for microwave spectroscopic investigations. It was found that microwave screening at 4 GHz allowed for the first time the detection of 12 ng/µL/cm2 of Hsp70.


Author(s):  
Yu-rong Zhu ◽  
Dan Zhang ◽  
Yang Gan ◽  
Fei-hu Zhang

<p>Silicon carbide (SiC) single crystals, along with sapphire and silicon, are one of most important substrates for high-brightness LED fabrications. Owing to extremely high hardness (Mohs&rsquo; scale of 9.5) and chemical inertness, the polishing rate of SiC with conventional chemical mechanical polishing (CMP) methods is not high, and surface scratches are also inevitable because of using slurry containing hard abrasives such as silica particles. Here artemisinin (Qinghaosu) crystals, very soft molecular solids, were found, for the first time to the best of our knowledge, to effectively polish SiC wafers even in pure water as demonstrated by proof-of-concept scratching experiments using atomic force microscopy (AFM). The underlying mechanism is attributed to activated oxidation of SiC by mechanically released reactive &middot;OH free radicals from the endoperoxide bridges. The preliminary results reported here have important implications for developing novel alternative green and scratch-free polishing methods for hard-brittle substrates including SiC and others.</p>


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 371 ◽  
Author(s):  
Ying Gao ◽  
Yuexin Han ◽  
Wenbo Li

The flotation behaviors of diatomite and albite using dodecylamine (DDA) as a collector were investigated and compared. The pure mineral flotation results indicate that the flotability difference between albite and diatomite is above 87% at pH 5.5 to 10.5. The recovery of albite improves with increasing DDA dosage at pH 5.5 to 10.5. In the same pH range, diatomite has weaker flotability than albite, particularly in alkaline pH pulp. Zeta potential measurements indicate that diatomite has a higher negative surface charge than albite at pH 7 to 12, DDA interacts strongly with albite and weakly with diatomite. Thus, DDA preferentially absorbs on albite surface rather than diatomite under alkaline conditions. Fourier transform infrared spectra (FTIR) indicate that the amount of DDA adsorbed to albite is greater than that adsorbed to diatomite, under the same conditions. The adsorption of DDA on the surface of diatomite is investigated by using atomic force microscopy (AFM) for the first time. The adsorption of the collector DDA on the surface of albite per unit area is greater than that on diatomite. This accounts for the lower recovery of diatomite than that of albite.


2011 ◽  
Vol 493-494 ◽  
pp. 473-476
Author(s):  
E.O. Lopez ◽  
F.F. Borghi ◽  
Alexandre Mello ◽  
J. Gomes ◽  
Antonella M. Rossi

In this present work, we characterize HAp thin films deposited by dual magnetron sputtering device DMS on silicon (Si/HAp). The sputtering RF power was varied from 90 watts to 120 watts and deposition times from 60 to 180 minutes. The argon and oxygen pressure were fixed at 5.0 mTorr and 1.0 mTorr, respectively. Grazing incidence X-ray diffraction (GIXRD) from synchrotron radiation, infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used for the structural characterization. At lower deposition times, a crystalline phase with preferential orientation along apatite (002) and a disordered nanocrystalline phase were identified. The coating crystallinity was improved with the increase of the deposition time besides the sputtering power.


Sign in / Sign up

Export Citation Format

Share Document