scholarly journals Process Intensification Approach Using Microreactors for Synthesizing Nanomaterials—A Critical Review

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 98
Author(s):  
Vikas Hakke ◽  
Shirish Sonawane ◽  
Sambandam Anandan ◽  
Shriram Sonawane ◽  
Muthupandian Ashokkumar

Nanomaterials have found many applications due to their unique properties such as high surface-to-volume ratio, density, strength, and many more. This review focuses on the recent developments on the synthesis of nanomaterials using process intensification. The review covers the designing of microreactors, design principles, and fundamental mechanisms involved in process intensification using microreactors for synthesizing nanomaterials. The microfluidics technology operates in continuous mode as well as the segmented flow of gas–liquid combinations. Various examples from the literature are discussed in detail highlighting the advantages and disadvantages of microfluidics technology for nanomaterial synthesis.

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3638 ◽  
Author(s):  
Maurizio Donarelli ◽  
Luca Ottaviano

After the synthesis of graphene, in the first year of this century, a wide research field on two-dimensional materials opens. 2D materials are characterized by an intrinsic high surface to volume ratio, due to their heights of few atoms, and, differently from graphene, which is a semimetal with zero or near zero bandgap, they usually have a semiconductive nature. These two characteristics make them promising candidate for a new generation of gas sensing devices. Graphene oxide, being an intermediate product of graphene fabrication, has been the first graphene-like material studied and used to detect target gases, followed by MoS2, in the first years of 2010s. Along with MoS2, which is now experiencing a new birth, after its use as a lubricant, other sulfides and selenides (like WS2, WSe2, MoSe2, etc.) have been used for the fabrication of nanoelectronic devices and for gas sensing applications. All these materials show a bandgap, tunable with the number of layers. On the other hand, 2D materials constituted by one atomic species have been synthetized, like phosphorene (one layer of black phosphorous), germanene (one atom thick layer of germanium) and silicone (one atom thick layer of silicon). In this paper, a comprehensive review of 2D materials-based gas sensor is reported, mainly focused on the recent developments of graphene oxide, exfoliated MoS2 and WS2 and phosphorene, for gas detection applications. We will report on their use as sensitive materials for conductometric, capacitive and optical gas sensors, the state of the art and future perspectives.


2017 ◽  
Vol 6 (5) ◽  
pp. 383-404 ◽  
Author(s):  
Chendong Han ◽  
Nicholas Romero ◽  
Stephen Fischer ◽  
Julia Dookran ◽  
Aaron Berger ◽  
...  

AbstractChronic infections have posed a tremendous burden on health care systems worldwide. Approximately 60% of chronic infections are estimated to be related to biofilms, in large part due to the extraordinary antibiotic resistance of biofilm bacteria. Nanoparticle (NP)-based therapies are viable approaches to treat biofilm-associated infections due to NPs’ unique chemical and physical properties, granted by their high surface area to volume ratio. The mechanism underlying the anti-biofilm activity of various types of NPs is actively under investigation. Simply comparing biofilm disruption or reduction rates is not adequate to describe the effectiveness of NPs; many other factors need to be taken into account, such as the NP type, bacterial strain, concentration of NPs, quantification methods, and the biofilm culture environment. This review focuses on recent research on the creation, characterization, and evaluation of NPs for the prevention or treatment of biofilm infections.


Author(s):  
Shweta Singh ◽  
Amar N. Tiwari ◽  
Sri N. Singh

The Vector control scheme widely used for control purposes of PMSM drives requires rotor position information. Generally, sensors are used for this purpose, which increases the cost, size, and complexity of the system and also reduces the efficiency of drives. Therefore, it has become essential to avoid the use of these sensors and go for sensorless drives. In this paper, different types of speed and position estimation techniques are reviewed for sensorless control with their recent developments and their inherent advantages and disadvantages.


Author(s):  
Yue Lu ◽  
Gang Wang ◽  
Zhuangdian Liang ◽  
Jian Sun ◽  
Yu Gu ◽  
...  

AbstractFractal theory, with its novel architectures inspired by nature, provides some novel concepts for smart reactor design. Here, researches on the applications of fractal theory to micro-reactor design are reviewed, in term of its high surface area-to-volume ratio, rapid and direct numbering-up, safety, and precise control. In addition, two designs of fractal micro-reactor are introduced as typical examples. First, the H-type fractal structure is considered in the context of the design of a double-plate micro-reactor, which is used for photocatalytic reactions of CO2. Second, applications of fractal Hilbert curves are considered in the design of channel structures for gas-liquid reactions. These two fractal micro-reactors can be fabricated via 3D printing technology and used for CO2conversion under mild conditions.


2021 ◽  
Vol 22 (12) ◽  
pp. 6357
Author(s):  
Kinga Halicka ◽  
Joanna Cabaj

Sensors and biosensors have found applications in many areas, e.g., in medicine and clinical diagnostics, or in environmental monitoring. To expand this field, nanotechnology has been employed in the construction of sensing platforms. Because of their properties, such as high surface area to volume ratio, nanofibers (NFs) have been studied and used to develop sensors with higher loading capacity, better sensitivity, and faster response time. They also allow to miniaturize designed platforms. One of the most commonly used techniques of the fabrication of NFs is electrospinning. Electrospun NFs can be used in different types of sensors and biosensors. This review presents recent studies concerning electrospun nanofiber-based electrochemical and optical sensing platforms for the detection of various medically and environmentally relevant compounds, including glucose, drugs, microorganisms, and toxic metal ions.


Author(s):  
Cynthia Nagy ◽  
Robert Huszank ◽  
Attila Gaspar

AbstractThis paper aims at studying open channel geometries in a layer-bed-type immobilized enzyme reactor with computer-aided simulations. The main properties of these reactors are their simple channel pattern, simple immobilization procedure, regenerability, and disposability; all these features make these devices one of the simplest yet efficient enzymatic microreactors. The high surface-to-volume ratio of the reactor was achieved using narrow (25–75 μm wide) channels. The simulation demonstrated that curves support the mixing of solutions in the channel even in strong laminar flow conditions; thus, it is worth including several curves in the channel system. In the three different designs of microreactor proposed, the lengths of the channels were identical, but in two reactors, the liquid flow was split to 8 or 32 parallel streams at the inlet of the reactor. Despite their overall higher volumetric flow rate, the split-flow structures are advantageous due to the increased contact time. Saliva samples were used to test the efficiencies of the digestions in the microreactors. Graphical abstract


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1109
Author(s):  
Varnakavi. Naresh ◽  
Nohyun Lee

A biosensor is an integrated receptor-transducer device, which can convert a biological response into an electrical signal. The design and development of biosensors have taken a center stage for researchers or scientists in the recent decade owing to the wide range of biosensor applications, such as health care and disease diagnosis, environmental monitoring, water and food quality monitoring, and drug delivery. The main challenges involved in the biosensor progress are (i) the efficient capturing of biorecognition signals and the transformation of these signals into electrochemical, electrical, optical, gravimetric, or acoustic signals (transduction process), (ii) enhancing transducer performance i.e., increasing sensitivity, shorter response time, reproducibility, and low detection limits even to detect individual molecules, and (iii) miniaturization of the biosensing devices using micro-and nano-fabrication technologies. Those challenges can be met through the integration of sensing technology with nanomaterials, which range from zero- to three-dimensional, possessing a high surface-to-volume ratio, good conductivities, shock-bearing abilities, and color tunability. Nanomaterials (NMs) employed in the fabrication and nanobiosensors include nanoparticles (NPs) (high stability and high carrier capacity), nanowires (NWs) and nanorods (NRs) (capable of high detection sensitivity), carbon nanotubes (CNTs) (large surface area, high electrical and thermal conductivity), and quantum dots (QDs) (color tunability). Furthermore, these nanomaterials can themselves act as transduction elements. This review summarizes the evolution of biosensors, the types of biosensors based on their receptors, transducers, and modern approaches employed in biosensors using nanomaterials such as NPs (e.g., noble metal NPs and metal oxide NPs), NWs, NRs, CNTs, QDs, and dendrimers and their recent advancement in biosensing technology with the expansion of nanotechnology.


2020 ◽  
Vol 6 (3) ◽  
pp. 155-158
Author(s):  
Katharina Wulf ◽  
Volkmar Senz ◽  
Thomas Eickner ◽  
Sabine Illner

AbstractIn recent years, nanofiber based materials have emerged as especially interesting for several biomedical applications, regarding their high surface to volume ratio. Due to the superficial nano- and microstructuring and the different wettability compared to nonstructured surfaces, the water absorption is an important parameter with respect to the degradation stability, thermomechanic properties and drug release properties, depending on the type of polymer [1]. In this investigation, the water absorption of different non- and plasma modified biostable nanofiber nonwovens based on polyurethane, polyester and polyamide were analysed and compared. Also, the water absorption by specified water wetting, the contact angle and morphology changes were examined. The results show that the water uptake is highly dependent on the surface modification and the polymer composition itself and can therefore be partially changed.


Nanophotonics ◽  
2020 ◽  
Vol 9 (15) ◽  
pp. 4497-4503
Author(s):  
Liying Zhang ◽  
Xiangqian Xiu ◽  
Yuewen Li ◽  
Yuxia Zhu ◽  
Xuemei Hua ◽  
...  

AbstractVertically aligned nanowire arrays, with high surface-to-volume ratio and efficient light-trapping absorption, have attracted much attention for photoelectric devices. In this paper, vertical β-Ga2O3 nanowire arrays with an average diameter/height of 110/450 nm have been fabricated by the inductively coupled plasma etching technique. Then a metal-semiconductor-metal structured solar-blind photodetector (PD) has been fabricated by depositing interdigital Ti/Au electrodes on the nanowire arrays. The fabricated β-Ga2O3 nanowire PD exhibits ∼10 times higher photocurrent and responsivity than the corresponding film PD. Moreover, it also possesses a high photocurrent to dark current ratio (Ilight/Idark) of ∼104 and a ultraviolet/visible rejection ratio (R260 nm/R400 nm) of 3.5 × 103 along with millisecond-level photoresponse times.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-26 ◽  
Author(s):  
Helge Skarphagen ◽  
David Banks ◽  
Bjørn S. Frengstad ◽  
Harald Gether

Borehole thermal energy storage (BTES) exploits the high volumetric heat capacity of rock-forming minerals and pore water to store large quantities of heat (or cold) on a seasonal basis in the geological environment. The BTES is a volume of rock or sediment accessed via an array of borehole heat exchangers (BHE). Even well-designed BTES arrays will lose a significant quantity of heat to the adjacent and subjacent rocks/sediments and to the surface; both theoretical calculations and empirical observations suggest that seasonal thermal recovery factors in excess of 50% are difficult to obtain. Storage efficiency may be dramatically reduced in cases where (i) natural groundwater advection through the BTES removes stored heat, (ii) extensive free convection cells (thermosiphons) are allowed to form, and (iii) poor BTES design results in a high surface area/volume ratio of the array shape, allowing high conductive heat losses. The most efficient array shape will typically be a cylinder with similar dimensions of diameter and depth, preferably with an insulated top surface. Despite the potential for moderate thermal recovery, the sheer volume of thermal storage that the natural geological environment offers can still make BTES a very attractive strategy for seasonal thermal energy storage within a “smart” district heat network, especially when coupled with more efficient surficial engineered dynamic thermal energy stores (DTES).


Sign in / Sign up

Export Citation Format

Share Document