scholarly journals Antibacterial Biodegradable Films Based on Alginate with Silver Nanoparticles and Lemongrass Essential Oil–Innovative Packaging for Cheese

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2377
Author(s):  
Ludmila Motelica ◽  
Denisa Ficai ◽  
Ovidiu-Cristian Oprea ◽  
Anton Ficai ◽  
Vladimir-Lucian Ene ◽  
...  

Replacing the petroleum-based materials in the food industry is one of the main objectives of the scientists and decision makers worldwide. Biodegradable packaging will help diminish the environmental impact of human activity. Improving such biodegradable packaging materials by adding antimicrobial activity will not only extend the shelf life of foodstuff, but will also eliminate some health hazards associated with food borne diseases, and by diminishing the food spoilage will decrease the food waste. The objective of this research was to obtain innovative antibacterial films based on a biodegradable polymer, namely alginate. Films were characterized by environmental scanning electron microscopy (ESEM), Fourier-transform infrared spectroscopy (FTIR) and microscopy, complex thermal analysis (TG-DSC-FTIR), UV-Vis and fluorescence spectroscopy. Water vapor permeability and swelling behavior were also determined. As antimicrobial agents, we used silver spherical nanoparticles (Ag NPs) and lemongrass essential oil (LGO), which were found to act in a synergic way. The obtained films exhibited strong antibacterial activity against tested strains, two Gram-positive (Bacillus cereus and Staphylococcus aureus) and two Gram-negative (Escherichia coli and Salmonella Typhi). Best results were obtained against Bacillus cereus. The tests indicate that the antimicrobial films can be used as packaging, preserving the color, surface texture, and softness of cheese for 14 days. At the same time, the color of the films changed (darkened) as a function of temperature and light presence, a feature that can be used to monitor the storage conditions for sensitive food.

Foods ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1801
Author(s):  
Ludmila Motelica ◽  
Denisa Ficai ◽  
Anton Ficai ◽  
Roxana-Doina Truşcă ◽  
Cornelia-Ioana Ilie ◽  
...  

New packaging materials based on biopolymers are gaining increasing attention due to many advantages like biodegradability or existence of renewable sources. Grouping more antimicrobials agents in the same packaging can create a synergic effect, resulting in either a better antimicrobial activity against a wider spectrum of spoilage agents or a lower required quantity of antimicrobials. In the present work, we obtained a biodegradable antimicrobial film that can be used as packaging material for food. Films based on chitosan as biodegradable polymer, with ZnO and Ag nanoparticles as filler/antimicrobial agents were fabricated by a casting method. The nanoparticles were loaded with citronella essential oil (CEO) in order to enhance the antimicrobial activity of the nanocomposite films. The tests made on Gram-positive, Gram-negative, and fungal strains indicated a broad-spectrum antimicrobial activity, with inhibition diameters of over 30 mm for bacterial strains and over 20 mm for fungal strains. The synergic effect was evidenced by comparing the antimicrobial results with chitosan/ZnO/CEO or chitosan/Ag/CEO simple films. According to the literature and our preliminary studies, these formulations are suitable as coating for fruits. The obtained nanocomposite films presented lower water vapor permeability values when compared with the chitosan control film. The samples were characterized by SEM, fluorescence and UV-Vis spectroscopy, FTIR spectroscopy and microscopy, and thermal analysis.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1020
Author(s):  
Ludmila Motelica ◽  
Denisa Ficai ◽  
Ovidiu Oprea ◽  
Anton Ficai ◽  
Roxana-Doina Trusca ◽  
...  

The petroleum-based materials could be replaced, at least partially, by biodegradable packaging. Adding antimicrobial activity to the new packaging materials can also help improve the shelf life of food and diminish the spoilage. The objective of this research was to obtain a novel antibacterial packaging, based on alginate as biodegradable polymer. The antibacterial activity was induced to the alginate films by adding various amounts of ZnO nanoparticles loaded with citronella (lemongrass) essential oil (CEO). The obtained films were characterized, and antibacterial activity was tested against two Gram-negative (Escherichia coli and Salmonella Typhi) and two Gram-positive (Bacillus cereus and Staphylococcus aureus) bacterial strains. The results suggest the existence of synergy between antibacterial activities of ZnO and CEO against all tested bacterial strains. The obtained films have a good antibacterial coverage, being efficient against several pathogens, the best results being obtained against Bacillus cereus. In addition, the films presented better UV light barrier properties and lower water vapor permeability (WVP) when compared with a simple alginate film. The preliminary tests indicate that the alginate films with ZnO nanoparticles and CEO can be used to successfully preserve the cheese. Therefore, our research evidences the feasibility of using alginate/ZnO/CEO films as antibacterial packaging for cheese in order to extend its shelf life.


2018 ◽  
Vol 86 (4) ◽  
pp. 52
Author(s):  
Andressa Batista ◽  
Hilania Dodou ◽  
Matheus Rodrigues ◽  
Pedro Pereira ◽  
Gleilton Sales ◽  
...  

The essential oil obtained from the leaves of Lippia alba (Mill.) N.E. Brown (Verbenaceae) has shown great pharmacological potential as an analgesic, antispasmodic, and antimicrobial agent. The aim of this study was to evaluate the modulatory effect of Lippia alba essential oil (LaEO I) on the activity of clinically used antimicrobial agents on Salmonella enterica serovar Typhi (Salmonella typhi) and Shigella dysenteriae biofilms. The Minimum Inhibitory Concentration of LaEO I (MICLaEO I) was determined by the microdilution method, and the effect of LaEO I on the activity of clinically used antimicrobials was assessed by the Checkboard method. The values obtained from MICLaEO I and ciprofloxacin were used to evaluate the effect of time of exposure on cell viability. LaEO I main components were geranial (34.2%), neral (25.9%), and myrcene (12.5%). The MICLaEO I was 1 mg/mL for both strains. LaEO I positively modulated the action of ciprofloxacin, cefepime, and ceftriaxone. After the first hour of treatment with MICLaEO I, the cell viability of the strains showed a 5 log10 CFU/mL reduction, and the LaEO I-CIP association was able to inhibit growth during the first 6 h of the test. Regarding the anti-biofilm activity, MICLaEO I was able to reduce the biofilm mass of Salmonella typhi by 61.2% and of Shigella dysenteriae by 38.9%. MICLaEO I was not able to eradicate the preformed biofilm; however, there was a reduction in the biofilm microbial viability. LaEO I has the potential to be used as an antimicrobial agent and interferes with biofilm formation; also, it is able to reduce cell viability in preformed biofilm and synergistically modulate the activity of ciprofloxacin.


Nanomaterials ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 1105 ◽  
Author(s):  
Giannakas ◽  
Salmas ◽  
Leontiou ◽  
Tsimogiannis ◽  
Oreopoulou ◽  
...  

The increased global market trend for food packaging is imposing new improved methods for the extension of shelf-life and quality of food products. Active packaging, which is based on the incorporation of additives into packaging materials, is becoming significant for this purpose. In this work, nanostructured low-density polyethylene (LDPE) was combined with chitosan (CS) to aim for a food packaging development with an increased oxygen permeability barrier and higher antimicrobial activity. Furthermore, essential oil extracts as rosemary (RO) and Melissa (MO) were added to this packaging matrix in order to improve its antioxidant properties and vanish food odor problems. The novel nanostructured active packaging film was tested using laboratory instrumental methods, such as thermogravimetry (TG), Fourier-transform infrared (FTIR) spectrometry, the X-ray diffraction (XRD) method, a dilatometer for tensile properties (DMA), and an oxygen permeation analyzer (OPA). Moreover, laboratorian tests according to ASTM standards were carried out for the estimation of water sorption, water vapor permeability, overall migration, and, finally, the antioxidant properties of such films. The experimental results have indicated that the final material exhibits advanced properties. More specifically, chitosan addition was observed to lead to an enhanced oxygen and water-vapor permeability barrier while the extracted essential oil addition led to enhanced tensile strength and antioxidant properties.


2017 ◽  
Vol 23 (7) ◽  
pp. 582-596 ◽  
Author(s):  
Mahboobeh Kashiri ◽  
Yahya Maghsoudlo ◽  
Morteza khomeiri

Active zein films with different levels of Zataria multiflora Boiss. essential oil were produced successfully. To enhance properties of this biopolymer for food packaging applications, sodium bentonite clay was used at two levels (2 and 4%). The results indicated that the addition of Z. multiflora Boiss. essential oil caused a reduction in tensile strength and Young’s modulus and slight increase in the percent of elongation at break of the films. Maximum solubility in water and water vapor permeability was observed by incorporation of 10% Z. multiflora Boiss. essential oil in the zein matrix. Transmission electron microscopy micrographs of zein film were verified by the exfoliation of the layers of sodium bentonite clay in the zein matrix. Stronger films with lower water vapor permeability and water solubility were evident of good distribution of sodium bentonite clay in the zein matrix. According to the results, 2% sodium bentonite clay was selected for evaluation of nano active film properties. Water vapor permeability, UV light barrier, tensile strength, and Young’s modulus values of active films were improved by incorporation of 2% sodium bentonite clay. The antibacterial activity of different contents of Z. multiflora Boiss. essential oil in vapor phase demonstrated that use of Z. multiflora Boiss. essential oil in the liquid phase was more effective than in vapor phase. The antibacterial zein-based films showed that active zein film with 5 and 10% Z. multiflora Boiss. essential oil had reductions of 1.68 log and 2.99 log, respectively, against Listeria monocytogenes and 1.39 and 3.07 log against Escherichia coli. Nano active zein film containing 10% Z. multiflora Boiss. essential oil and 2% sodium bentonite clay showed better antibacterial properties against L. monocytogenes (3.23 log) and E. coli (3.17 log).


2012 ◽  
Vol 550-553 ◽  
pp. 993-999 ◽  
Author(s):  
Yun Bin Zhang ◽  
Jun Peng

In this study, physical properties of chitosan edible films incorporated with essential oil monomers were tested. Emulsifying nature of chitosan could be combined essential oil monomer forming emulsions, hence homogeneous, thin and pale yellow membranes were achieved. With different of the essential oil monomer content, the nature of the films had undergone a drastic change. Water-solubility and water vapor permeability of chitosan edible films reduced when essential oil monomers concentration increased. All the mechanical properties(tensile strength and elongation) increased when essential oil monomers concentration gradual increased. Compared with single chitosan films, essential oil-chitosan films have been greatly enhanced their mechanical properties and antibacterial activities.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3791
Author(s):  
Negin Noori ◽  
Ali Khanjari ◽  
Mohammadreza Rezaeigolestani ◽  
Ioannis K. Karabagias ◽  
Sahar Mokhtari

Among the main biodegradable food packaging materials, poly-lactic acid (PLA) is a commercially successful polymer used notably in the food packaging industry. In this study, active PLA films containing different percentage of anise essential oil (AE) (0, 0.5, 1 and 1.5% v/v) were developed, and characterized by physical, mechanical and antibacterial analysis. Based on physical examinations, thermal stability of PLA/AE films was greater than the neat PLA film, and the minimum water vapor permeability (WVP) was recorded for PLA/0.5AE film (1.29 × 10 11 g/m s), while maximum WVP was observed for PLA/1.5AE (2.09 × 1011 g/m s). Moreover, the lightness and yellowness of the composites were decreased by the addition of AE. For the PLA composites with 1.5% AE, the tensile strength decreased by 35% and the elongation break increased by 28.09%, comparing to the pure PLA. According to the antibacterial analysis, the minimum inhibitory concentrations of PLA/AE film were 5 to 100 mg/mL and the active composite could create visible inhibition zones of 14.2 to 19.2 mm. Furthermore, the films containing AE inhibited L. monocytogenes and V. parahaemolyticus in a concentration-dependent manner. The confirmation of the success of the incorporation of EOs into the PLA films was further evaluated using principal component analysis, where positive results were obtained. In this context, our findings suggest the significant potency of AE to be used as an antibacterial agent in active food packaging.


2018 ◽  
Vol 24 (8) ◽  
pp. 705-712 ◽  
Author(s):  
Andrea E Restrepo ◽  
José D Rojas ◽  
Omar R García ◽  
Leidy T Sánchez ◽  
Magda I Pinzón ◽  
...  

Edible films are among the most promising fields in food science over the last decade due to their versatility (they can be made from a wide array of materials) and because they can be used as carriers of different active substances, like antioxidants, antimicrobial agents, and essential oils from plants. In the case of the essential oils, their inclusion in edible films is limited by their low water solubility. Nanoemulsions are thermodynamically stable and transparent systems that can be used as a way of incorporating essential oils into edible film matrices. In this paper, we developed lemongrass and rosemary essential oil nanoemulsions by using a low-energy method, observing the effect of the surfactant/oil ratio in their physicochemical properties. Then we studied the effect of the nanoemulsions concentration incorporated into banana starch edible films. We observed that essential oils’ nanoemulsions have a plasticizing effect increasing the film’s water vapor permeability, transparency, and elongation at break, while the hydrophobic nature of the essential oils lead to a decrease in their water solubility.


2014 ◽  
Vol 971-973 ◽  
pp. 81-84
Author(s):  
Yan Wu ◽  
Chun Sheng Chen ◽  
Yu Yue Qin ◽  
Jian Xin Cao

A novel antimicrobial poly (lactide) (PLA) film incorporated with clove essential oil (0, 2%, 4%, and 6% (w/v)) was developed. The mechanical property, water vapor permeability, color, contact angle, and antimicrobial activity of the films were investigated. The flexibility of films was improved by incorporation with clove. The water vapor permeability slightly increased with clove content. PLA film containing clove showed better antimicrobial activity compared to pure PLA film. The results suggested that PLA/clove blends could be a novel composite film for food packaging applications.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6114
Author(s):  
Boo-Kyoung Kim ◽  
Hae-Se Lee ◽  
Hee-Su Yang ◽  
Kyung-Bin Song

There have been many studies on the development biodegradable films using starch isolated from various food sources as a substitute for synthetic plastic packaging films. In this study, starch was extracted from ginkgo (Ginkgo biloba) nuts, which were mainly discarded and considered an environment hazard. The prepared starch (GBS) was then used for the preparation of antioxidant films by incorporating various amounts of cinnamon (Cinnamomum zeylanicum) essential oil (CZEO), which provides antioxidant activity. The prepared GBS films with CZEO were characterized by measuring physical, optical, and thermal properties, along with antioxidant activity (ABTS, DPPH, and FRAP) measurements. With the increasing amount of CZEO, the flexibility and antioxidant activities of the GBS films increased proportionally, whereas the tensile strength of the films decreased. The added CZEO also increased the water vapor permeability of the GBS films, and the microstructure of the GBS films was homogeneous overall. Therefore, the obtained results indicate that the developed GBS films containing CZEO are applicable as antioxidant food packaging.


Sign in / Sign up

Export Citation Format

Share Document