scholarly journals Graphene Nanoplatelets Modified with Amino-Groups by Ultrasonic Radiation of Variable Frequency for Potential Adsorption of Uremic Toxins

Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1261 ◽  
Author(s):  
C. Cabello-Alvarado ◽  
M. Andrade-Guel ◽  
M. Pérez-Alvarez ◽  
G. Cadenas-Pliego ◽  
Dora A. Cortés-Hernández ◽  
...  

Chronic kidney disease (CKD) is a worldwide public health problem. In stages III and IV of CKD, uremic toxins must be removed from the patient by absorption, through a treatment commonly called hemodialysis. Aiming to improve the absorption of uremic toxins, we have studied its absorption in chemically modified graphene nanoplatelets (GNPs). This study involved the reaction between GNPs and diamines with reaction times of 30, 45 and 60 min using ultrasound waves of different amplitudes and frequencies. Functionalized GNPs were analyzed by Fourier Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy and energy dispersitive spectroscopy (SEM-EDS), and Thermogravimetric analysis (TGA). The analysis of the functional groups confirmed the presence of amide and hydroxyl groups on the surface of the GNPs by reactions of diamines with carboxylic acids and epoxides. Adsorption of uremic toxins was determined using equilibrium isotherms, where the maximum percentage of removal of uremic toxins was 97%. Dispersion of modified graphene nanoplatelets was evaluated in water, ethanol and hexane, as a result of this treatment was achieved a good and effective dispersion of diamines-modified graphene nanoplatelets in ethanol and hexane. Finally, the results of hemolysis assays of the modified graphene with amine demonstrated that it was not cytotoxic when using 500 mg/mL. The samples of modified graphene demonstrated low degree of hemolysis (<2%), so this material can be used for in vivo applications such as hemodialysis.

Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 715 ◽  
Author(s):  
M. Andrade-Guel ◽  
C. Cabello-Alvarado ◽  
V. Cruz-Delgado ◽  
P. Bartolo-Perez ◽  
P. De León-Martínez ◽  
...  

Ultrasound energy is a green and economically viable alternative to conventional techniques for surface modification of materials. The main benefits of this technique are the decrease of processing time and the amount of energy used. In this work, graphene nanoplatelets were treated with organic acids under ultrasonic radiation of 350 W at different times (30 and 60 min) aiming to modify their surface with functional acid groups and to improve the adsorption of uremic toxins. The modified graphene nanoplatelets were characterized by Fourier transform infrared spectroscopy (FT–IR), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The optimum time for modification with organic acids was 30 min. The modified nanoplatelets were tested as adsorbent material for uremic toxins using the equilibrium isotherms where the adsorption isotherm of urea was adjusted for the Langmuir model. From the solution, 75% of uremic toxins were removed and absorbed by the modified nanoplatelets.


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


2021 ◽  
Vol 19 ◽  
pp. 228080002110068
Author(s):  
Hsien-Te Chen ◽  
Hsin-I Lin ◽  
Chi-Jen Chung ◽  
Chih-Hsin Tang ◽  
Ju-Liang He

Here, we present a bone implant system of phase-oriented titanium dioxide (TiO2) fabricated by the micro-arc oxidation method (MAO) on β-Ti to facilitate improved osseointegration. This (101) rutile-phase-dominant MAO TiO2 (R-TiO2) is biocompatible due to its high surface roughness, bone-mimetic structure, and preferential crystalline orientation. Furthermore, (101) R-TiO2 possesses active and abundant hydroxyl groups that play a significant role in enhancing hydroxyapatite formation and cell adhesion and promote cell activity leading to osseointegration. The implants had been elicited their favorable cellular behavior in vitro in the previous publications; in addition, they exhibit excellent shear strength and promote bone–implant contact, osteogenesis, and tissue formation in vivo. Hence, it can be concluded that this MAO R-TiO2 bone implant system provides a favorable active surface for efficient osseointegration and is suitable for clinical applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhou Fang ◽  
Junjian Chen ◽  
Ye Zhu ◽  
Guansong Hu ◽  
Haoqian Xin ◽  
...  

AbstractPeptides are widely used for surface modification to develop improved implants, such as cell adhesion RGD peptide and antimicrobial peptide (AMP). However, it is a daunting challenge to identify an optimized condition with the two peptides showing their intended activities and the parameters for reaching such a condition. Herein, we develop a high-throughput strategy, preparing titanium (Ti) surfaces with a gradient in peptide density by click reaction as a platform, to screen the positions with desired functions. Such positions are corresponding to optimized molecular parameters (peptide densities/ratios) and associated preparation parameters (reaction times/reactant concentrations). These parameters are then extracted to prepare nongradient mono- and dual-peptide functionalized Ti surfaces with desired biocompatibility or/and antimicrobial activity in vitro and in vivo. We also demonstrate this strategy could be extended to other materials. Here, we show that the high-throughput versatile strategy holds great promise for rational design and preparation of functional biomaterial surfaces.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sam Wong ◽  
Simone Alidori ◽  
Barbara P. Mello ◽  
Bryan Aristega Almeida ◽  
David Ulmert ◽  
...  

AbstractCellulose nanocrystals (CNC) are linear organic nanomaterials derived from an abundant naturally occurring biopolymer resource. Strategic modification of the primary and secondary hydroxyl groups on the CNC introduces amine and iodine group substitution, respectively. The amine groups (0.285 mmol of amine per gram of functionalized CNC (fCNC)) are further reacted with radiometal loaded-chelates or fluorescent dyes as tracers to evaluate the pharmacokinetic profile of the fCNC in vivo. In this way, these nanoscale macromolecules can be covalently functionalized and yield water-soluble and biocompatible fibrillar nanoplatforms for gene, drug and radionuclide delivery in vivo. Transmission electron microscopy of fCNC reveals a length of 162.4 ± 16.3 nm, diameter of 11.2 ± 1.52 nm and aspect ratio of 16.4 ± 1.94 per particle (mean ± SEM) and is confirmed using atomic force microscopy. Size exclusion chromatography of macromolecular fCNC describes a fibrillar molecular behavior as evidenced by retention times typical of late eluting small molecules and functionalized carbon nanotubes. In vivo, greater than 50% of intravenously injected radiolabeled fCNC is excreted in the urine within 1 h post administration and is consistent with the pharmacological profile observed for other rigid, high aspect ratio macromolecules. Tissue distribution of fCNC shows accumulation in kidneys, liver, and spleen (14.6 ± 6.0; 6.1 ± 2.6; and 7.7 ± 1.4% of the injected activity per gram of tissue, respectively) at 72 h post-administration. Confocal fluorescence microscopy reveals cell-specific accumulation in these target tissue sinks. In summary, our findings suggest that functionalized nanocellulose can be used as a potential drug delivery platform for the kidneys.


2021 ◽  
Vol 22 (12) ◽  
pp. 6196
Author(s):  
Anna Pieniazek ◽  
Joanna Bernasinska-Slomczewska ◽  
Lukasz Gwozdzinski

The presence of toxins is believed to be a major factor in the development of uremia in patients with chronic kidney disease (CKD) and end-stage renal disease (ESRD). Uremic toxins have been divided into 3 groups: small substances dissolved in water, medium molecules: peptides and low molecular weight proteins, and protein-bound toxins. One of the earliest known toxins is urea, the concentration of which was considered negligible in CKD patients. However, subsequent studies have shown that it can lead to increased production of reactive oxygen species (ROS), and induce insulin resistance in vitro and in vivo, as well as cause carbamylation of proteins, peptides, and amino acids. Other uremic toxins and their participation in the damage caused by oxidative stress to biological material are also presented. Macromolecules and molecules modified as a result of carbamylation, oxidative stress, and their adducts with uremic toxins, may lead to cardiovascular diseases, and increased risk of mortality in patients with CKD.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1814
Author(s):  
Plinio Mendes Senna ◽  
Carlos Fernando de Almeida Barros Mourão ◽  
Rafael Coutinho Mello-Machado ◽  
Kayvon Javid ◽  
Pietro Montemezzi ◽  
...  

Silane-coating strategy has been used to bind biological compounds to the titanium surface, thereby making implant devices biologically active. However, it has not been determined if the presence of the silane coating itself is biocompatible to osseointegration. The aim of the present study was to evaluate if silane-coating affects bone formation on titanium using a rabbit model. For this, titanium screw implants (3.75 by 6 mm) were hydroxylated in a solution of H2SO4/30% H2O2 for 4 h before silane-coating with 3-aminopropyltriethoxysilane (APTES). A parallel set of titanium screws underwent only the hydroxylation process to present similar acid-etched topography as a control. The presence of the silane on the surface was checked by x-ray photoelectron spectroscopy (XPS), with scanning electron microscopy (SEM) and atomic force microscopy (AFM). A total of 40 titanium screws were implanted in the tibia of ten New Zealand rabbits in order to evaluate bone-to-implant contact (BIC) after 3 weeks and 6 weeks of healing. Silane-coated surface presented higher nitrogen content in the XPS analysis, while micro- and nano-topography of the surface remained unaffected. No difference between the groups was observed after 3 and 6 weeks of healing (p > 0.05, independent t-test), although an increase in BIC occurred over time. These results indicate that silanization of a titanium surface with APTES did not impair the bone formation, indicating that this can be a reliable tool to anchor osteogenic molecules on the surface of implant devices.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1097
Author(s):  
Andras Polyak ◽  
Jens P. Bankstahl ◽  
Karen F. W. Besecke ◽  
Constantin Hozsa ◽  
Wiebke Triebert ◽  
...  

In this work, a method for the preparation of the highly lipophilic labeling synthon [89Zr]Zr(oxinate)4 was optimized for the radiolabeling of liposomes and human induced pluripotent stem cells (hiPSCs). The aim was to establish a robust and reliable labeling protocol for enabling up to one week positron emission tomography (PET) tracing of lipid-based nanomedicines and transplanted or injected cells, respectively. [89Zr]Zr(oxinate)4 was prepared from oxine (8-hydroxyquinoline) and [89Zr]Zr(OH)2(C2O4). Earlier introduced liquid–liquid extraction methods were simplified by the optimization of buffering, pH, temperature and reaction times. For quality control, thin-layer chromatography (TLC), size-exclusion chromatography (SEC) and centrifugation were employed. Subsequently, the 89Zr-complex was incorporated into liposome formulations. PET/CT imaging of 89Zr-labeled liposomes was performed in healthy mice. Cell labeling was accomplished in PBS using suspensions of 3 × 106 hiPSCs, each. [89Zr]Zr(oxinate)4 was synthesized in very high radiochemical yields of 98.7% (96.8% ± 2.8%). Similarly, high internalization rates (≥90%) of [89Zr]Zr(oxinate)4 into liposomes were obtained over an 18 h incubation period. MicroPET and biodistribution studies confirmed the labeled nanocarriers’ in vivo stability. Human iPSCs incorporated the labeling agent within 30 min with ~50% efficiency. Prolonged PET imaging is an ideal tool in the development of lipid-based nanocarriers for drug delivery and cell therapies. To this end, a reliable and reproducible 89Zr radiolabeling method was developed and tested successfully in a model liposome system and in hiPSCs alike.


2013 ◽  
Vol 5 (15) ◽  
pp. 6909-6914 ◽  
Author(s):  
Guodong Liu ◽  
He Shen ◽  
Jinning Mao ◽  
Liming Zhang ◽  
Zhen Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document