scholarly journals African Sorghum-Based Fermented Foods: Past, Current and Future Prospects

Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1111 ◽  
Author(s):  
Oluwafemi Ayodeji Adebo

Sorghum (Sorghum bicolor) is a well-known drought and climate resistant crop with vast food use for the inhabitants of Africa and other developing countries. The importance of this crop is well reflected in its embedded benefits and use as a staple food, with fermentation playing a significant role in transforming this crop into an edible form. Although the majority of these fermented food products evolve from ethnic groups and rural communities, industrialization and the application of improved food processing techniques have led to the commercial success and viability of derived products. While some of these sorghum-based fermented food products still continue to bask in this success, much more still needs to be done to further explore evolving techniques, technologies and processes. The addition of other affordable nutrient sources in sorghum-based fermented foods is equally important, as this will effectively augment the intake of a nutritionally balanced product.

2021 ◽  
pp. 75-85
Author(s):  
I. A. Adesokan ◽  
A. I. Sanni ◽  
S. S. Kanwar

Probiotics are living microbial food supplements which beneficially affect the host by improving the intestinal microbial balance. Before an organism can be designated as probiotic there are certain criteria that must be fulfilled. These include acid and bile tolerance, antimicrobial activity, ability to co-aggregate, hydrophobicity etc. One hundred and eighty one indigenous yeast isolates recovered from various fermented food products of Nigeria were characterized and grouped using phenotypic methods. Forty two selected yeast isolates were identified using molecular method which involved sequencing of D1 and D2 domain of the large subunit of ribosomal DNA. Then nine indigenous Saccharomyces cerevisiae were evaluated for their probiotic characteristics such as acid and bile tolerance, transit in simulated gastric and intestinal juices, autoaggregation and hydrophobicity. Saccharomyces cerevisiae SC10 was included as a positive control. The S. cerevisiae were able to grow in the presence of acidic medium with pH as low as 2 and 3. In the minimum inhibitory concentration test with 0-1% ox bile, all the S. cerevisiae tested were able to grow. The growth for 3% bile tolerance test ranged from 4.81 to 5.35 log cfu/ml. These isolates were able to survive in simulated gastro-intestinal transit. All the yeast isolates exhibited bile salt deconjugation activity against sodium glycodeoxycholate and were able to grow in the presence of all other bile salts investigated. Autoaggregation ability (an adhesive property) of the indigenous yeast isolates ranged from 89.80% for S. cerevisiae BK19 to 99.91% for S. cerevisiae OB03. The native yeast isolates also exhibited high percentage hydrophobicity, another adhesive property of probiotics. The values obtained ranged from 31.62 to 83.45% for isolates AG23A and OB 17. These observations indicate that the native yeast isolates from Nigerian fermented foods have the potential of being use as probiotics for making functional foods.


Author(s):  
Radka Burdychová ◽  
V. Dohnal

The contemporary trend is using probiotic cultures in fermented food production. They can be used as starter cultures and for their positive effect on human health. Probiotics are defined as living microorganisms present in food which consumed in adequate amounts affects positively the intestinal microflora’s composition and balance and thus human health itself. Cultures of these bacteria have to be of human origin and be able to survive the passage through the gastrointestinal tract. They also have to be able to multiply on the site of action (in intestine) and must not be toxic or pathogenic. Unfortunately, even some probiotic cultures can be counted among potential producers of biogenic amines, so their testing for the presence of biogenic amines is necessary (BURDYCHOVÁ, 2007).The aim of this study was screening of 26 types of bacterial cultures (SACCO, Italy) as probiotic cultures for their ability to produce biogenic amines tyramine and histamine. Cultivation in decarboxy­lating medium (BOVER-CID and HOLZAPFEL, 1999), HPLC descibed by BURDYCHOVÁ and DOHNAL (2007), and PCR detection of genes coding enzymes tyrosindecarboxylase and histidindecarboxylase, participating in formation of biogenic amines (COTON et al., 2004), were used as the screening methods. 19 strains of Lactobacillus spp., 3 strains of Bifidobacterium spp., 2 strains of Pediococcus spp. and 2 strains of Enterococcus spp. were examined by the methods mentioned above. The tyramine production was detected at 8 strains of Lactobacillus spp., 3 strains of Bifidobacterium spp. and 2 strains of Enterococcus spp., whereas no tested cultures were found to be able to produce histamine.The strains at which production of biogenic amines tyramine and histamine wasn’t detected are suitable for fermented food processing. When the strains at which production of tyramine was demonstrated were used in food processing, a control of concentration of this biogenic amine in final product is highly recommended.


2007 ◽  
Vol 70 (11) ◽  
pp. 2606-2612 ◽  
Author(s):  
BEILEI GE ◽  
PING JIANG ◽  
FEIFEI HAN ◽  
NASREEN K. SALEH ◽  
NIVEDITA DHIMAN ◽  
...  

One important safety criterion of using lactic acid bacteria (LAB) in food applications is to ensure that they do not carry transferable antimicrobial resistance (AR) determinants. In this study, 63 LAB belonging to six genera, Streptococcus, Lactobacillus, Lactococcus, Enterococcus, Leuconostoc, and Pediococcus, were recovered from 28 retail fermented food products in Maryland, identified to species with 16S–23S rRNA spacer PCRs, and characterized for antimicrobial susceptibility against eight antimicrobials. Besides intrinsic resistance to ciprofloxacin or vancomycin in some lactobacilli, tetracycline resistance was observed in two Streptococcus thermophilus isolates from one cheese and one sour cream sample and was associated with the presence of a nonconjugative tet(S) gene. The results indicated a low level of AR among naturally occurring and starter LAB cultures in fermented dairy and meat products in the United States; therefore, the probability for foodborne LAB to serve as reservoirs of AR is low. Further studies involving a larger sample size are needed to assess the potential risk of AR gene transfer from LAB in fermented food products.


1999 ◽  
Vol 65 (10) ◽  
pp. 4484-4489 ◽  
Author(s):  
M. F. S. Lopes ◽  
C. I. Pereira ◽  
F. M. S. Rodrigues ◽  
M. P. Martins ◽  
M. C. Mimoso ◽  
...  

ABSTRACT Cheese produced from raw ewes’ milk andchouriço, a Portuguese dry fermented sausage, are still produced in a traditional way in certain regions of Portugal by relying on colonization by microbial populations associated with the raw materials, equipment, and local environments. For the purpose of describing the product origins and types of these fermented foods, metabolic phenotypes can be used as descriptors of the product as well as to determine the presence of compounds with organoleptic value. The application of artificial neural networks to the metabolic profiles of bacterial isolates was assayed and allowed the separation of products from different regions. This method could then be used for the Registered Designation of Origin certification process of food products. Therefore, besides test panel results for these traditionally produced food products, another tool for validating products for the marketplace is available to the producers. The method can be improved for the detection of counterfeit products.


2021 ◽  
Author(s):  
Andrew Flachs ◽  
Joseph Orkin

Abstract BackgroundThe composition of the human microbiome varies considerably in diversity and density across communities as a function of the foods we eat and the places we live. While all foods contain microbes, humans directly shape this microbial ecology through fermentation. Fermented foods are produced from microbial reactions that depend on local environmental conditions, fermentation practices, and the manner in which foods are prepared and consumed. These interactions are of special interest to ethnobiologists because they link investigations of how people shape and know the world around them to local knowledge, food traditions, local flora, and microbial taxa. MethodsIn this manuscript, we report on data collected at a fermentation revivalist workshop in Tennessee. To ask how fermentation traditions are learned and influence macro and micro ecologies, we conducted interviews and participated in a four-day craft fermentation workshop, and then collected both fermented food products and stool samples from workshop participants eating those fermented foods. ResultsWe identified ten major themes comprised of 29 sub-themes drawn from 326 marked codes in the transcripts. In combination, this analysis allowed us to summarize key experiences with fermentation, particularly those related to a sense of authenticity, place, health, and the discovery of tactile work. From the 605 ASVs shared between food and fecal samples, we identified 25 candidate ASVs that are suspected to have been transmitted from fermented food samples to the gut microbiomes of the workshop participants. Our results indicate that many of the foods prepared and consumed during the workshop were rich sources of probiotic microbes. ConclusionsBy combining these qualitative social and quantitative microbiological data, we suggest that variation in culturally-informed fermentation practices introduces variation in bacterial flora even among very similar foods, and that these food products can influence gut microbial ecology.


Dairy ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 202-232
Author(s):  
Raphael D. Ayivi ◽  
Rabin Gyawali ◽  
Albert Krastanov ◽  
Sulaiman O. Aljaloud ◽  
Mulumebet Worku ◽  
...  

Research on lactic acid bacteria has confirmed how specific strains possess probiotic properties and impart unique sensory characteristics to food products. The use of probiotic lactic acid bacteria (LAB) in many food products, thus confers various health benefits to humans when they are frequently consumed in adequate amounts. The advent of functional food or the concept of nutraceuticals objectively places more emphasis on seeking alternatives to limit the use of medications thus promoting the regular consumption of fermented foods. Probiotic use has thus been recommended to fulfill the role of nutraceuticals, as no side effects on human health have been reported. Probiotics and lactic acid bacteria can boost and strengthen the human immune system, thereby increasing its resistance against numerous disease conditions. Consumer safety and confidence in dairy and fermented food products and the desire of the food industry to meet the sensory and health needs of consumers, has thus increased the demand for probiotic starter cultures with exceptional performance coupled with health benefiting properties. The potential of probiotic cultures and lactic acid bacteria in many industrial applications including fermented food products generally affects product characteristics and also serves as health-promoting foods for humans. The alleviation of lactose intolerance in many populations globally has been one of the widely accepted health claims attributed to probiotics and lactic acid bacteria, although many diseases have been treated with probiotic lactic acid bacteria and have been proven with scientific and clinical studies. The aim of our review was to present information related to lactic acid bacteria, the new classification and perspectives on industrial applications with a special emphasis on food safety and human health.


2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Andrew Flachs ◽  
Joseph D. Orkin

Abstract Background The composition of the human microbiome varies considerably in diversity and density across communities as a function of the foods we eat and the places we live. While all foods contain microbes, humans directly shape this microbial ecology through fermentation. Fermented foods are produced from microbial reactions that depend on local environmental conditions, fermentation practices, and the manner in which foods are prepared and consumed. These interactions are of special interest to ethnobiologists because they link investigations of how people shape and know the world around them to local knowledge, food traditions, local flora, and microbial taxa. Methods In this manuscript, we report on data collected at a fermentation revivalist workshop in Tennessee. To ask how fermentation traditions are learned and influence macro and micro ecologies, we conducted interviews with eleven people and participated in a four-day craft fermentation workshop. We also collected 46 fermented food products and 46 stool samples from workshop participants eating those fermented foods. Results We identified ten major themes comprised of 29 sub-themes drawn from 326 marked codes in the transcripts. In combination, this analysis allowed us to summarize key experiences with fermentation, particularly those related to a sense of authenticity, place, health, and the discovery of tactile work. From the 605 amplicon sequence variants (ASVs) shared between food and fecal samples, we identified 25 candidate ASVs that are suspected to have been transmitted from fermented food samples to the gut microbiomes of the workshop participants. Our results indicate that many of the foods prepared and consumed during the workshop were rich sources of probiotic microbes. Conclusions By combining these qualitative social and quantitative microbiological data, we suggest that variation in culturally informed fermentation practices introduces variation in bacterial flora even among very similar foods, and that these food products can influence gut microbial ecology.


2012 ◽  
Vol 194 (18) ◽  
pp. 5141-5142 ◽  
Author(s):  
Françoise Irlinger ◽  
Valentin Loux ◽  
Pascal Bento ◽  
Jean-François Gibrat ◽  
Cécile Straub ◽  
...  

ABSTRACTStaphylococcus equorumsubsp.equorumis a member of the coagulase-negative staphylococcus group and is frequently isolated from fermented food products and from food-processing environments. It contributes to the formation of aroma compounds during the ripening of fermented foods, especially cheeses and sausages. Here, we report the draft genome sequence ofStaphylococcus equorumsubsp.equorumMu2 to provide insights into its physiology and compare it with otherStaphylococcusspecies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adrienn Gréta Tóth ◽  
István Csabai ◽  
Gergely Maróti ◽  
Ákos Jerzsele ◽  
Attila Dubecz ◽  
...  

AbstractAntimicrobial resistance (AMR) is a global threat gaining more and more practical significance every year. The main determinants of AMR are the antimicrobial resistance genes (ARGs). Since bacteria can share genetic components via horizontal gene transfer, even non-pathogenic bacteria may provide ARG to any pathogens which they become physically close to (e.g. in the human gut). In addition, fermented food naturally contains bacteria in high amounts. In this study, we examined the diversity of ARG content in various kefir and yoghurt samples (products, grains, bacterial strains) using a unified metagenomic approach. We found numerous ARGs of commonly used fermenting bacteria. Even with the strictest filter restrictions, we identified ARGs undermining the efficacy of aminocoumarins, aminoglycosides, carbapenems, cephalosporins, cephamycins, diaminopyrimidines, elfamycins, fluoroquinolones, fosfomycins, glycylcyclines, lincosamides, macrolides, monobactams, nitrofurans, nitroimidazoles, penams, penems, peptides, phenicols, rifamycins, tetracyclines and triclosan. In the case of gene lmrD, we detected genetic environment providing mobility of this ARG. Our findings support the theory that during the fermentation process, the ARG content of foods can grow due to bacterial multiplication. The results presented suggest that the starting culture strains of fermented foods should be monitored and selected in order to decrease the intake of ARGs via foods.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1490
Author(s):  
Wei Wang ◽  
Lu Dong ◽  
Yan Zhang ◽  
Huaning Yu ◽  
Shuo Wang

In order to reduce the formation of heterocyclic amines in grilled beef patties without destroying their unique quality characteristics, the effects of different thermal processes, including charcoal grilling, infrared grilling, superheated steam roasting and microwave heating, on the production of heterocyclic amines in beef patties and grilling quality characteristics were systematically analyzed. The results showed that infrared grilling can significantly (p < 0.05) reduce the content of heterocyclic amines in grilled patties, and the combination of microwave heating or superheated steam roasting with infrared grilling could further reduce the content of heterocyclic amines, with a maximum reduction ratio of 44.48%. While subtle differences may exist in infrared grilled patties with/without superheated steam roasting or microwave heating, a slight change will not affect the overall quality characteristics of grilled patties. The combined thermal processing will not visually affect the color of the grilled patties. Correlation analysis and regression analysis showed that the reduction in heterocyclic amines caused by microwave heating and superheated steam roasting are related to the moisture content and lipid oxidation of grilled patties, respectively. Using combined thermal processes to reduce the formation of heterocyclic amines is advisable.


Sign in / Sign up

Export Citation Format

Share Document