scholarly journals Multivariate Analysis Reveals That Unsubstituted β-Ring and C8-Keto Structures Are Important Factors for Anti-Inflammatory Activity of Carotenoids

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3699
Author(s):  
Yuki Manabe ◽  
Nami Tomonaga ◽  
Takashi Maoka ◽  
Tatsuya Sugawara

Carotenoids are natural lipophilic pigments with substantial health benefits. Numerous studies have demonstrated the anti-inflammatory activities of carotenoids, especially toward lipopolysaccharide-induced inflammatory responses. As such, there are few reports on the evaluation and comparison of the anti-inflammatory activities of carotenoids against inflammation induced by other stimuli. In this study, we used pathogen-associated molecular patterns, proinflammatory cytokines, degenerated proteins, and chemical irritants as inflammatory inducers to evaluate the anti-inflammatory activities of eight different carotenoids. Each carotenoid showed characteristic anti-inflammatory activities; thus, we conducted a multivariate analysis to clarify the differences among them. Unsubstituted β-ring (i.e., provitamin A) and C8-keto structures of carotenoids were found to be crucial for their inhibitory effects on the activation of nuclear factor-kappa B and interferon regulatory factors, respectively. Furthermore, we found that β-carotene and echinenone treatment increased intracellular retinoid levels in monocytes and that the retinoids showed the similar activities to β-carotene and echinenone. Taken together, the intake of both provitamin A and C8-keto carotenoids (e.g., siphonaxanthin and fucoxanthin) might be effective in improving the inflammatory status of individuals. A multivariate analysis of anti-inflammatory activities is a useful method for characterizing anti-inflammatory compounds.

Author(s):  
M.L. Bellotto ◽  
A. Castro ◽  
I.L.P. Bonfante ◽  
D.T. Brunelli ◽  
M.P.T. Chacon-Mikahil ◽  
...  

BACKGROUND: High visceral fat storage unbalance secretion inflammatory peptides, however diet plays an important role-protecting metabolism against chronic diseases inherent to this condition. OBJECTIVE: To assess obese diet quality and find association with inflammatory biomarkers. METHODS: aMED, a Food Quality Index, classified the inflammatory power of 26 obese men’s diet (aged: 48.1±5.1; BMI: 31.1±2.45). Pearson correlation coefficient associated diet quality in tertiles (1st as low, 2nd as average and 3 rd as high quality diet) with inflammatory variables (cytokines and waist circumference). RESULTS: The intake of anti-inflammatory food groups was significantly higher among tertiles (3rd >  2nd >  1st; P <  0.001). Adiponectin was lower in the 2nd tertile than in the 1st (P <  0.05). Whole cereal presented a positive correlation with TNF-alpha (p = 0.049), and a negative correlation with IL–15 (p = 0.002). Fish presented a positive correlation with IL–10 (p = 0.024), Resistin (p = 0.039) and PGE–2 (p = 0.001). These findings pointed to pro and anti-inflammatory responses. CONCLUSIONS: The method may need adjustments when used to assess obese food intake, since they don't usually meet the daily-recommended intake. Other lifestyles variables should be considered, which may affect the inflammatory status.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3197 ◽  
Author(s):  
Irene Cuadrado ◽  
Ángel Amesty ◽  
Juan Cedrón ◽  
Juan Oberti ◽  
Ana Estévez-Braun ◽  
...  

A series of nine derivatives (2–10) were prepared from the diterpene solidagenone (1) and their structures were elucidated by means of spectroscopic studies. Their ability to inhibit inflammatory responses elicited in peritoneal macrophages by TLR ligands was investigated. Compounds 5 and 6 showed significant anti-inflammatory effects, as they inhibited the protein expression of nitric oxide synthase (NOS-2), cyclooxygenase-2 (COX-2), and cytokine production (TNF-α, IL-6, and IL-12) induced by the ligand of TLR4, lipopolysaccharide (LPS), acting at the transcriptional level. Some structure–activity relationships were outlined. Compound 5 was selected as a representative compound and molecular mechanisms involved in its biological activity were investigated. Inhibition of NF-κB and p38 signaling seems to be involved in the mechanism of action of compound 5. In addition, this compound also inhibited inflammatory responses mediated by ligands of TLR2 and TLR3 receptors. To rationalize the obtained results, molecular docking and molecular dynamic studies were carried out on TLR4. All these data indicate that solidagenone derivative 5 might be used for the design of new anti-inflammatory agents.


2021 ◽  
Vol 22 (18) ◽  
pp. 9825
Author(s):  
Tiago Alexandre Conde ◽  
Ioannis Zabetakis ◽  
Alexandros Tsoupras ◽  
Isabel Medina ◽  
Margarida Costa ◽  
...  

Noncommunicable diseases (NCD) and age-associated diseases (AAD) are some of the gravest health concerns worldwide, accounting for up to 70% of total deaths globally. NCD and AAD, such as diabetes, obesity, cardiovascular disease, and cancer, are associated with low-grade chronic inflammation and poor dietary habits. Modulation of the inflammatory status through dietary components is a very appellative approach to fight these diseases and is supported by increasing evidence of natural and dietary components with strong anti-inflammatory activities. The consumption of bioactive lipids has a positive impact on preventing chronic inflammation and consequently NCD and AAD. Thus, new sources of bioactive lipids have been sought out. Microalgae are rich sources of bioactive lipids such as omega-6 and -3 polyunsaturated fatty acids (PUFA) and polar lipids with associated anti-inflammatory activity. PUFAs are enzymatically and non-enzymatically catalyzed to oxylipins and have a significant role in anti and pro-resolving inflammatory responses. Therefore, a large and rapidly growing body of research has been conducted in vivo and in vitro, investigating the potential anti-inflammatory activities of microalgae lipids. This review sought to summarize and critically analyze recent evidence of the anti-inflammatory potential of microalgae lipids and their possible use to prevent or mitigate chronic inflammation.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Rui Tian ◽  
Gonglin Hou ◽  
Dan Li ◽  
Ti-Fei Yuan

Sustained stress triggers series of changes in the brain and the body. At the early stage of stress, the activated hypothalamus-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS) axis can upregulate the levels of glucocorticoid (GCs) and catecholamines (CAs), respectively, and then they in turn inhibit the secretion of proinflammatory cytokines directly or indirectly while promoting the secretion of anti-inflammatory cytokines. At the prolonged stage, the sustained activated HPA demonstrates cortisol-resistance. At the same time, the inflammation related transcription pathway, such as nuclear-factor kappa-B (NF-κB) signaling, may be inhibited. Additionally, the inflammatory cytokines mediate a negative feedback regulation on themselves. Collectively, these regulations may increase the proinflammatory cytokines while decreasing the anti-inflammatory cytokines. This may further activate NF-κB and increase the proinflammation cytokines, which in turn reduce the inflammatory responses, contributing to various diseases.


2014 ◽  
Vol 84 (Supplement 1) ◽  
pp. 25-29 ◽  
Author(s):  
Guangwen Tang

Humans need vitamin A and obtain essential vitamin A by conversion of plant foods rich in provitamin A and/or absorption of preformed vitamin A from foods of animal origin. The determination of the vitamin A value of plant foods rich in provitamin A is important but has challenges. The aim of this paper is to review the progress over last 80 years following the discovery on the conversion of β-carotene to vitamin A and the various techniques including stable isotope technologies that have been developed to determine vitamin A values of plant provitamin A (mainly β-carotene). These include applications from using radioactive β-carotene and vitamin A, depletion-repletion with vitamin A and β-carotene, and measuring postprandial chylomicron fractions after feeding a β-carotene rich diet, to using stable isotopes as tracers to follow the absorption and conversion of plant food provitamin A carotenoids (mainly β-carotene) in humans. These approaches have greatly promoted our understanding of the absorption and conversion of β-carotene to vitamin A. Stable isotope labeled plant foods are useful for determining the overall bioavailability of provitamin A carotenoids from specific foods. Locally obtained plant foods can provide vitamin A and prevent deficiency of vitamin A, a remaining worldwide concern.


2019 ◽  
Vol 16 (10) ◽  
pp. 1157-1166
Author(s):  
Rodrigo César da Silva ◽  
Fabiano Veiga ◽  
Fabiana Cardoso Vilela ◽  
André Victor Pereira ◽  
Thayssa Tavares da Silva Cunha ◽  
...  

Background: : A new series of O-benzyloximes derived from eugenol was synthesized and was evaluated for its antinociceptive and anti-inflammatory properties. Methods: : The target compounds were obtained in good global 25-28% yields over 6 steps, which led us to identify compounds (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-(4- (methylthio)benzyloxime (8b), (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-4- bromobenzyloxime (8d) and (Z)-5,6-dimethoxy-2,2-dimethyl-2,3-dihydro-1H-inden-1-one-O-4- (methylsulfonyl)benzyloxime (8f) as promising bioactive prototypes. Results:: These compounds have significant analgesic and anti-inflammatory effects, as evidenced by formalin-induced mice paw edema and carrageenan-induced mice paw edema tests. In the formalin test, compounds 8b and 8f evidenced both anti-inflammatory and direct analgesic activities and in the carrageenan-induced paw edema, with compounds 8c, 8d, and 8f showing the best inhibitory effects, exceeding the standard drugs indomethacin and celecoxib. Conclusion: : Molecular docking studies have provided additional evidence that the pharmacological profile of these compounds may be related to inhibition of COX enzymes, with slight preference for COX-1. These results led us to identify the new O-benzyloxime ethers 8b, 8d and 8f as orally bioactive prototypes, with a novel structural pattern capable of being explored in further studies aiming at their optimization and development as drug candidates.


2020 ◽  
Vol 19 (7) ◽  
pp. 483-494
Author(s):  
Tyler J. Wenzel ◽  
Evan Kwong ◽  
Ekta Bajwa ◽  
Andis Klegeris

: Glial cells, including microglia and astrocytes, facilitate the survival and health of all cells within the Central Nervous System (CNS) by secreting a range of growth factors and contributing to tissue and synaptic remodeling. Microglia and astrocytes can also secrete cytotoxins in response to specific stimuli, such as exogenous Pathogen-Associated Molecular Patterns (PAMPs), or endogenous Damage-Associated Molecular Patterns (DAMPs). Excessive cytotoxic secretions can induce the death of neurons and contribute to the progression of neurodegenerative disorders, such as Alzheimer’s disease (AD). The transition between various activation states of glia, which include beneficial and detrimental modes, is regulated by endogenous molecules that include DAMPs, cytokines, neurotransmitters, and bioactive lipids, as well as a diverse group of mediators sometimes collectively referred to as Resolution-Associated Molecular Patterns (RAMPs). RAMPs are released by damaged or dying CNS cells into the extracellular space where they can induce signals in autocrine and paracrine fashions by interacting with glial cell receptors. While the complete range of their effects on glia has not been described yet, it is believed that their overall function is to inhibit adverse CNS inflammatory responses, facilitate tissue remodeling and cellular debris removal. This article summarizes the available evidence implicating the following RAMPs in CNS physiological processes and neurodegenerative diseases: cardiolipin (CL), prothymosin α (ProTα), binding immunoglobulin protein (BiP), heat shock protein (HSP) 10, HSP 27, and αB-crystallin. Studies on the molecular mechanisms engaged by RAMPs could identify novel glial targets for development of therapeutic agents that effectively slow down neuroinflammatory disorders including AD.


2021 ◽  
Vol 22 (2) ◽  
pp. 488
Author(s):  
Young-Su Yi

Inflammation, an innate immune response that prevents cellular damage caused by pathogens, consists of two successive mechanisms, namely priming and triggering. While priming is an inflammation-preparation step, triggering is an inflammation-activation step, and the central feature of triggering is the activation of inflammasomes and intracellular inflammatory protein complexes. Flavonoids are natural phenolic compounds predominantly present in plants, fruits, and vegetables and are known to possess strong anti-inflammatory activities. The anti-inflammatory activity of flavonoids has long been demonstrated, with the main focus on the priming mechanisms, while increasing numbers of recent studies have redirected the research focus on the triggering step, and studies have reported that flavonoids inhibit inflammatory responses and diseases by targeting inflammasome activation. Rheumatic diseases are systemic inflammatory and autoimmune diseases that primarily affect joints and connective tissues, and they are associated with numerous deleterious effects. Here, we discuss the emerging literature on the ameliorative role of flavonoids targeting inflammasome activation in inflammatory rheumatic diseases.


Sign in / Sign up

Export Citation Format

Share Document