scholarly journals Lead Compounds in the Context of Extracellular Vesicle Research

Pharmaceutics ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 716
Author(s):  
Thao T.D. Tran ◽  
Phuong H.L. Tran

Studies of small extracellular vesicles (sEVs), known as exosomes, have been flourishing in the last decade with several achievements, from advancing biochemical knowledge to use in biomedical applications. Physiological changes of sEVs due to the variety of cargos they carry undoubtedly leave an impression that affects the understanding of the mechanism underlying disease and the development of sEV-based shuttles used for treatments and non-invasive diagnostic tools. Indeed, the remarkable properties of sEVs are based on their nature, which helps shield them from recognition by the immune system, protects their payload from biochemical degradation, and contributes to their ability to translocate and convey information between cells and their inherent ability to target disease sites such as tumors that is valid for sEVs derived from cancer cells. However, their transport, biogenesis, and secretion mechanisms are still not thoroughly clear, and many ongoing investigations seek to determine how these processes occur. On the other hand, lead compounds have been playing critical roles in the drug discovery process and have been recently employed in studies of the biogenesis and secretion of sEVs as external agents, affecting sEV release and serving as drug payloads in sEV drug delivery systems. This article gives readers an overview of the roles of lead compounds in these two research areas of sEVs, the rising star in studies of nanoscale medicine.

Author(s):  
Shuo Zhang ◽  
Frederieke A. M. van der Mee ◽  
Roel J. Erckens ◽  
Carroll A. B. Webers ◽  
Tos T. J. M. Berendschot

AbstractIn this report we present a confocal Raman system to identify the unique spectral features of two proteins, Interleukin-10 and Angiotensin Converting Enzyme. Characteristic Raman spectra were successfully acquired and identified for the first time to our knowledge, showing the potential of Raman spectroscopy as a non-invasive investigation tool for biomedical applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leyla A. Erozenci ◽  
Sander R. Piersma ◽  
Thang V. Pham ◽  
Irene V. Bijnsdorp ◽  
Connie R. Jimenez

AbstractThe protein content of urinary extracellular vesicles (EVs) is considered to be an attractive non-invasive biomarker source. However, little is known about the consistency and variability of urinary EV proteins within and between individuals over a longer time-period. Here, we evaluated the stability of the urinary EV proteomes of 8 healthy individuals at 9 timepoints over 6 months using data-independent-acquisition mass spectrometry. The 1802 identified proteins had a high correlation amongst all samples, with 40% of the proteome detected in every sample and 90% detected in more than 1 individual at all timepoints. Unsupervised analysis of top 10% most variable proteins yielded person-specific profiles. The core EV-protein-interaction network of 516 proteins detected in all measured samples revealed sub-clusters involved in the biological processes of G-protein signaling, cytoskeletal transport, cellular energy metabolism and immunity. Furthermore, gender-specific expression patterns were detected in the urinary EV proteome. Our findings indicate that the urinary EV proteome is stable in longitudinal samples of healthy subjects over a prolonged time-period, further underscoring its potential for reliable non-invasive diagnostic/prognostic biomarkers.


2021 ◽  
Vol 43 (2) ◽  
pp. 900-916
Author(s):  
Anna Zubrzycka ◽  
Monika Migdalska-Sęk ◽  
Sławomir Jędrzejczyk ◽  
Ewa Brzeziańska-Lasota

Endometriosis is a chronic gynecological disease defined by the presence of endometrial-like tissue found outside the uterus, most commonly in the peritoneal cavity. Endometriosis lesions are heterogenous but usually contain endometrial stromal cells and epithelial glands, immune cell infiltrates and are vascularized and innervated by nerves. The complex etiopathogenesis and heterogenity of the clinical symptoms, as well as the lack of a specific non-invasive diagnostic biomarkers, underline the need for more advanced diagnostic tools. Unfortunately, the contribution of environmental, hormonal and immunological factors in the disease etiology is insufficient, and the contribution of genetic/epigenetic factors is still fragmentary. Therefore, there is a need for more focused study on the molecular mechanisms of endometriosis and non-invasive diagnostic monitoring systems. MicroRNAs (miRNAs) demonstrate high stability and tissue specificity and play a significant role in modulating a range of molecular pathways, and hence may be suitable diagnostic biomarkers for the origin and development of endometriosis. Of these, the most frequently studied are those related to endometriosis, including those involved in epithelial–mesenchymal transition (EMT), whose expression is altered in plasma or endometriotic lesion biopsies; however, the results are ambiguous. Specific miRNAs expressed in endometriosis may serve as diagnostics markers with prognostic value, and they have been proposed as molecular targets for treatment. The aim of this review is to present selected miRNAs associated with EMT known to have experimentally confirmed significance, and discuss their utility as biomarkers in endometriosis.


Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 678
Author(s):  
Carlo Diaferia ◽  
Elisabetta Rosa ◽  
Enrico Gallo ◽  
Giovanni Smaldone ◽  
Mariano Stornaiuolo ◽  
...  

Peptide-based hydrogels (PHGs) are biocompatible materials suitable for biological, biomedical, and biotechnological applications, such as drug delivery and diagnostic tools for imaging. Recently, a novel class of synthetic hydrogel-forming amphiphilic cationic peptides (referred to as series K), containing an aliphatic region and a Lys residue, was proposed as a scaffold for bioprinting applications. Here, we report the synthesis of six analogues of the series K, in which the acetyl group at the N-terminus is replaced by aromatic portions, such as the Fmoc protecting group or the Fmoc-FF hydrogelator. The tendency of all peptides to self-assemble and to gel in aqueous solution was investigated using a set of biophysical techniques. The structural characterization pointed out that only the Fmoc-derivatives of series K keep their capability to gel. Among them, Fmoc-K3 hydrogel, which is the more rigid one (G’ = 2526 Pa), acts as potential material for tissue engineering, fully supporting cell adhesion, survival, and duplication. These results describe a gelification process, allowed only by the correct balancing among aggregation forces within the peptide sequences (e.g., van der Waals, hydrogen bonding, and π–π stacking).


Author(s):  
Jijo Lukose ◽  
Sanoop Pavithran M. ◽  
Mithun N. ◽  
Ajaya Kumar Barik ◽  
Keerthilatha M. Pai ◽  
...  

AbstractHuman saliva can be treated as a pool of biological markers able to reflect on the state of personal health. Recent years have witnessed an increase in the use of optical devices for the analysis of body fluids. Several groups have carried out studies investigating the potential of saliva as a non-invasive and reliable clinical specimen for use in medical diagnostics. This brief review aims to highlight the optical technologies, mainly surface plasmon resonance (SPR), Raman, and Fourier transform infrared (FTIR) spectroscopy, which are being used for the probing of saliva for diverse biomedical applications. Advances in bio photonics offer the promise of unambiguous, objective and fast detection of abnormal health conditions and viral infections (such as COVID-19) from the analysis of saliva.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Divya Bhagirath ◽  
Michael Liston ◽  
Theresa Akoto ◽  
Byron Lui ◽  
Barbara A. Bensing ◽  
...  

AbstractNeuroendocrine prostate cancer (NEPC), a highly aggressive variant of castration-resistant prostate cancer (CRPC), often emerges upon treatment with androgen pathway inhibitors, via neuroendocrine differentiation. Currently, NEPC diagnosis is challenging as available markers are not sufficiently specific. Our objective was to identify novel, extracellular vesicles (EV)-based biomarkers for diagnosing NEPC. Towards this, we performed small RNA next generation sequencing in serum EVs isolated from a cohort of CRPC patients with adenocarcinoma characteristics (CRPC-Adeno) vs CRPC-NE and identified significant dysregulation of 182 known and 4 novel miRNAs. We employed machine learning algorithms to develop an ‘EV-miRNA classifier’ that could robustly stratify ‘CRPC-NE’ from ‘CRPC-Adeno’. Examination of protein repertoire of exosomes from NEPC cellular models by mass spectrometry identified thrombospondin 1 (TSP1) as a specific biomarker. In view of our results, we propose that a miRNA panel and TSP1 can be used as novel, non-invasive tools to identify NEPC and guide treatment decisions. In conclusion, our study identifies for the first time, novel non-invasive exosomal/extracellular vesicle based biomarkers for detecting neuroendocrine differentiation in advanced castration resistant prostate cancer patients with important translational implications in clinical management of these patients that is currently extremely challenging.


2019 ◽  
Vol 21 (Supplement_4) ◽  
pp. iv6-iv6
Author(s):  
Daniele Baiz ◽  
Caterina Negroni ◽  
Emanuela Ercolano ◽  
Claire L Adams ◽  
Kathreena M Kurian ◽  
...  

Abstract Introduction Meningioma brain tumours are the most common primary tumour in adults. Despite surgery and/or radiation therapy, meningioma may recur. The 5-year recurrence rate in benign meningioma is estimated in about 10% while much greater in atypical and malignant tumours. MicroRNAs (miRNAs) represent a large class of small RNAs driving regulation of gene expression and playing a role in tumour progression and therefore proposed as diagnostic tools. Moreover, miRNAs can be released from tumour cells into the blood stream via exosomes, showing potential to be used as liquid biopsies. Methods Identification of novel circulating biomarkers was conducted by performing an unbiased Cancer MicroRNA qPCR Array, followed by bioinformatics analysis. In parallel, we conducted a biased in silico analysis of the miRNAs targeting Cyclin D1 and E1, recently proposed as immunohistochemical meningioma biomarkers. Validation studies performed using TaqMan® reagents. Results Stringent unbiased (p<0.01) miRNA profiling followed by validation in ex vivo samples revealed that the miR-9-1 is upregulated in higher-grade meningioma tissues and serum exosomes, controlled by the EGFR/AP-1 axis and correlated with lower levels of E-Cadherin, a proposed biomarker for malignant meningioma. On the contrary, biased analysis, followed by validation in vitro and ex vivo, showed that the miR-497~195 cluster is downregulated in higher-grade meningioma tissues and serum exosomes, correlating with the overexpression of GATA-4, a novel meningioma tissue biomarker. Conclusion Our data demonstrated that both miR-497~195 and miR-9-1 show potential to become promising non-invasive biomarkers for higher-grade meningioma, reflecting their expression status in tissues. (DB and CN contributed equally).


Author(s):  
Dawlat Nader Eltatawy ◽  
Fatma Anas Elsharawy ◽  
Aly Aly Elbarbary ◽  
Raghda Ghonimy Elsheikh ◽  
Manal Ezzat Badawy

Abstract Background A wide variety of congenital thoracic aortic variants and pathological anomalies could be assessed recently in diagnostic and interventional radiology. Multi-detector computed tomography (MDCT) is one of the most important non-invasive diagnostic tools for their detection. The aim of the study was to evaluate role of MDCT scanning for diagnosis of thoracic aortic anatomic variants and diseases in pediatric patients. Results Thirty patients (15 male and 15 female), mean age (8.49 ± 20.29 months) were diagnosed with different thoracic aortic anomalies by MDCT then confirmed by surgical results. MDCT was more sensitive than echocardiography in detection of hypo plastic arch, vascular rings, interrupted aortic arch anomalies, and aortic coarctation. Both MDCT and echocardiography showed 100% sensitivity in their detection of TGA, TOF, and PDA. MDCT detected 6 cases of right-sided aortic arch while echo missed 2 cases. Different aortic arch branching patterns and coronary origin were better demonstrated by MDCT. Conclusion 320-Multi-detector computed tomography is a reliable tool for optimal detection of thoracic aortic anomalies and preoperative planning.


Author(s):  
Gyöngyvér Orsolya Sándor ◽  
András Áron Soós ◽  
Péter Lörincz ◽  
Lívia Rojkó ◽  
Tünde Harkó ◽  
...  

Extracellular vesicles (EV) are considered as a potential tool for early disease diagnosis; however, factors modifying EV release remain partially unknown. By using patient-derived organoids that capture the cellular heterogeneity of epithelial tissues, here we studied the connection between the Wnt-producing microniche and EV secretion in multiple tissues. Although nearly all cells in pancreatic ductal (PD) and pancreatic ductal adenocarcinoma (PDAC) samples expressed porcupine (PORCN), an enzyme critical for Wnt secretion, only a subpopulation of lung bronchiolar (NL) and lung adenocarcinoma (LUAD) organoid cells produced active Wnt. The microniche for proliferating cells was shaped not only by PORCN + cells in NL and LUAD organoids but also by fibroblast-derived EVs. This effect could be blocked by using Wnt secretion inhibitors. Whereas inhibiting Wnt secretion in PD NL or LUAD organoids critically changed both cell proliferation and EV release, these were uncoupled from each other in PDAC. Sorting for CD133 identified a cell population in the LUAD microniche that produced organoids with a high percentage of PORCN + and proliferating cells and an elevated EV secretion, which may explain that CD133 marks LUAD cells with malignant behavior. Collectively, we show here that high cell proliferation rate, induced by Wnt pathway activation, is coupled to a higher EV release, a critical finding that may be considered when developing EV-based diagnostic tools.


Sign in / Sign up

Export Citation Format

Share Document