scholarly journals Elucidating the Innate Immunological Effects of Mild Magnetic Hyperthermia on U87 Human Glioblastoma Cells: An In Vitro Study

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1668
Author(s):  
Stefano Persano ◽  
Francesco Vicini ◽  
Alessandro Poggi ◽  
Jordi Leonardo Castrillo Fernandez ◽  
Giusy Maria Rita Rizzo ◽  
...  

Cancer immunotherapies have been approved as standard second-line or in some cases even as first-line treatment for a wide range of cancers. However, immunotherapy has not shown clinically relevant success in glioblastoma (GBM). This is principally due to the brain’s “immune-privileged” status and the peculiar tumor microenvironment (TME) of GBM characterized by a lack of tumor-infiltrating lymphocytes and the establishment of immunosuppressive mechanisms. Herein, we explore a local mild thermal treatment, generated via cubic-shaped iron oxide magnetic nanoparticles (size ~17 nm) when exposed to an external alternating magnetic field (AMF), to induce immunogenic cell death (ICD) in U87 glioblastoma cells. In accordance with what has been observed with other tumor types, we found that mild magnetic hyperthermia (MHT) modulates the immunological profile of U87 glioblastoma cells by inducing stress-associated signals leading to enhanced phagocytosis and killing of U87 cells by macrophages. At the same time, we demonstrated that mild magnetic hyperthermia on U87 cells has a modulatory effect on the expression of inhibitory and activating NK cell ligands. Interestingly, this alteration in the expression of NK ligands in U87 cells upon MHT treatment increased their susceptibility to NK cell killing and enhanced NK cell functionality. The overall findings demonstrate that mild MHT stimulates ICD and sensitizes GBM cells to NK-mediated killing by inducing the upregulation of specific stress ligands, providing a novel immunotherapeutic approach for GBM treatment, with potential to synergize with existing NK cell-based therapies thus improving their therapeutic outcomes.

Author(s):  
Stefano Persano ◽  
Francesco Vicini ◽  
Alessandro Poggi ◽  
Jordi Leonardo Castrillo Fernandez ◽  
Giusy Maria Rita Rizzo ◽  
...  

Cancer immunotherapies are gaining a large popularity and many of them have been approved as standard second-line or in some cases even as first-line treatment for a wide range of cancers. However, immunotherapy has not shown a clinically relevant success in glioblastoma (GBM), principally due to the brain’s “immune-privileged” status and the peculiar tumor microenvironment (TME) of GBM featured by lack of presence of tumor-infiltrating lymphocytes and the establishment of immunosuppressive mechanisms. Emerging evidence has highlighted the key role played by innate immune cells in immunosurveillance and in initiating and driving immune responses against GBM. Immunogenic cell death (ICD) is a promising approach to elicit direct activation of the innate immune system by inducing in target cancer cells the expression of molecular signatures recognized through a repertoire of innate immune cell pattern recognition receptors (PRRs) by effector innate immune cells. Herein, we explored local mild thermal treatment, generated by using ultrasmall (size ~ 17 nm) cubic-shaped iron oxide nanoparticles exposed to an external alternating magnetic field (AMF), to induce ICD in U87 glioblastoma cells. In accordance with what has been previously observed with other types of tumors, we found that mild hyperthermia modulates the immunological profile of U87 glioblastoma cells by inducing stress-associated signals leading to enhanced phagocytosis and killing of U87 cells by macrophages. Finally, we demonstrated that mild magnetic hyperthermia has a modulatory effect on the expression of inhibitory and activating NK cell ligands on target cells. Interestingly, alteration in the expression of NK ligands, caused by mild hyperthermia treatment, in U87 glioblastoma cells, increased their susceptibility to NK cell killing and NK cell functionality. The overall findings demonstrate that mild magnetic hyperthermia stimulates ICD and sensitizes GBM cells to NK-mediated killing by inducing the upregulation of specific stress ligands, providing a novel immunotherapeutic approach for GBM treatment, with potential to synergize with existing NK cell-based therapies thus improving their therapeutic outcomes.


Author(s):  
Jens Weusmann ◽  
James Deschner ◽  
Jean-Claude Imber ◽  
Anna Damanaki ◽  
Natalia D. P. Leguizamón ◽  
...  

Abstract Objectives Air-polishing has been used in the treatment of periodontitis and gingivitis for years. The introduction of low-abrasive powders has enabled the use of air-polishing devices for subgingival therapy. Within the last decade, a wide range of different low-abrasive powders for subgingival use has been established. In this study, the effects of a glycine powder and a trehalose powder on human gingival fibroblasts (HGF) were investigated. Methods HGF were derived from three systemically and periodontally healthy donors. After 24 h and 48 h of incubation time, mRNA levels, and after 48 h, protein levels of TNFα, IL-8, CCL2, and VEGF were determined. In addition, NF-κB p65 nuclear translocation and in vitro wound healing were assessed. Statistical analysis was performed by ANOVA and post hoc Dunnett’s and Tukey’s tests (p < 0.05). Results Glycine powder significantly increased the expression of proinflammatory genes and showed exploitation of the NF-κB pathway, albeit trehalose powder hardly interfered with cell function and did not trigger the NF-κB pathway. In contrast to trehalose, glycine showed a significant inhibitory effect on the in vitro wound healing rate. Conclusion Subgingivally applicable powders for air-polishing devices can regulate cell viability and proliferation as well as cytokine expression. Our in vitro study suggests that the above powders may influence HGF via direct cell effects. Trehalose appears to be relatively inert compared to glycine powder.


2021 ◽  
Vol 14 ◽  
Author(s):  
Marwa M. Khalaf ◽  
Emad H.M. Hassanein ◽  
Abdel-Gawad S. Shalkami ◽  
Ramadan A.M. Hemeida ◽  
Wafaa R. Mohamed

Background: Methotrexate (MTX) is used potently for a wide range of diseases. However, hepatic intoxication by MTX hinders its clinical use. Objectives: The present study was conducted to investigate the diallyl disulfide (DADS) ability to ameliorate MTX-induced hepatotoxicity. Methods: Thirty-two rats were randomly divided into four groups: normal control, DADS (50 mg/kg/day, orally), MTX (single i.p. injection of 20 mg/kg) and DADS+MTX. Liver function biomarkers, histopathological examinations, oxidative stress, inflammation, and apoptosis biomarkers were investigated. Besides, an in vitro cytotoxic activity study was conducted to explore the modulatory effects of DADS on MTX cytotoxic activity using Caco-2, MCF-7, and HepG2 cells. Results: DADS significantly reduced the increased serum activities of ALT, AST, ALP, and LDH. These results were confirmed by the alleviation of liver histopathological changes. It restored the decreased GSH content and SOD activity, while significantly decreased MTX-induced elevations in both MDA and NO2- contents. The hepatoprotective effects were mechanistically mediated through the up-regulation of hepatic Nrf-2 and the down-regulation of Keap-1, P38MAPK, and NF-κB expression levels. In addition, an increase in Bcl-2 level with a decrease in the expression of both Bax and caspase-3 was observed. The in vitro study showed that DADS increased MTX anti-tumor efficacy. Conclusions: DADS potently alleviated MTX-induced hepatotoxicity through the modulation of Keap-1/Nrf-2, P38MAPK/NF-κB and apoptosis signaling pathways and effectively enhanced the MTX cytotoxic effects, which could be promising for further clinical trials.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Oliver Podlech ◽  
Patrick N. Harter ◽  
Michel Mittelbronn ◽  
Simone Pöschel ◽  
Ulrike Naumann

In Europe, commercially available extracts from the white-berry mistletoe (Viscum albumL.) are widely used as a complementary cancer therapy. Mistletoe lectins have been identified as main active components and exhibit cytotoxic effects as well as immunomodulatory activity. Since it is still not elucidated in detail how mistle toe extracts such as ISCADOR communicate their effects, we analyzed the mechanisms that might be responsible for their antitumoral function on a molecular and functional level. ISCADOR-treated glioblastoma (GBM) cells down-regulate central genes involved in glioblastoma progression and malignancy such as the cytokine TGF-βand matrix-metalloproteinases. Usingin vitroglioblastoma/immune cell co-cultivation assays as well as measurement of cell migration and invasion, we could demonstrate that in glioblastoma cells, lectin-rich ISCADOR M and ISCADOR Q significantly enforce NK-cell-mediated GBM cell lysis. Beside its immune stimulatory effect, ISCADOR reduces the migratory and invasive potential of glioblastoma cells. In a syngeneic as well as in a xenograft glioblastoma mouse model, both pretreatment of tumor cells and intratumoral therapy of subcutaneously growing glioblastoma cells with ISCADOR Q showed delayed tumor growth. In conclusion, ISCADOR Q, showing multiple positive effects in the treatment of glioblastoma, may be a candidate for concomitant treatment of this cancer.


2012 ◽  
Vol 1415 ◽  
Author(s):  
Qi Wang ◽  
Thomas J. Webster

ABSTRACTBiofilms are a common cause of persistent infections on medical devices as they are easy to form and hard to treat. Selenium and its compounds are considered to be a novel material for a wide range of applications including anticancer applications and antibacterial applications. The objective of this study was to coat selenium nanoparticles on the surface of polycarbonate medical devices and examine their effectiveness at preventing biofilm formation. The results of this in vitro study showed that the selenium coating significantly inhibited Staphylococcus aureus growth on the surface of polycarbonate after 24 hours. Thus, this study suggests that coating polymers with nanostructured selenium is a fast and effective way to reduce bacteria functions leading to medical device infections.


Author(s):  
Yi-Hsuan Lee ◽  
Chao-Min Wang ◽  
Po-Yu Liu ◽  
Ching-Chang Cheng ◽  
Zong-Yen Wu ◽  
...  

Essential oils from the dried spikes ofNepeta tenuifolia(Benth) are obtained by steam distillation. Pulegone was identified as the main component in the spikes ofN. tenuifoliathrough analysis, with greater than 85% purity obtained in this study. The essential oils are extremely active against all Gram-positive and some Gram-negative reference bacteria, particularlySalmonella enterica,Citrobacter freundii, andEscherichia coli. The minimum inhibitory concentration was found to be between 0.08 and 0.78% (againstS. enterica), 0.39 and 0.78% (againstC. freundii), and 0.097 and 0.39% (againstE. coli), whereas the minimum bactericidal concentration varied in range from 0.097% to 1.04%. In general, the essential oils show a strong inhibitory action against all tested reference strains and clinical isolates. However, the antibacterial activity of EOs against bothPseudomonas aeruginosareference strains and clinical isolates was relatively lower than other Gram-negative pathogens. The essential oils ofN. tenuifoliaalso displayed bactericidal activities (MBC/MIC < 4) in this study. These findings reflect the bactericidal activity of the essential oils against a wide range of multidrug-resistant clinical pathogens in an in vitro study. In addition, we propose the fragmentation pathways of pulegone and its derivatives by LC-ESI-MS/MS in this study.


Author(s):  
Timo Weimar ◽  
Anson M. Lee ◽  
Shuddhadeb Ray ◽  
Richard B. Schuessler ◽  
Ralph J. Damiano

Objective Cryoablation has been used to ablate cardiac tissue for decades and has been shown to be able to replace incisions in the surgical treatment of atrial fibrillation. This in vitro study evaluates the performance of a novel cryoprobe and compares it with existing commercially available devices. Methods A new malleable 10-cm aluminum cryoprobe was compared with a rigid 3.5-cm copper linear probe using in vitro testing to evaluate performances under different thermal loads and with different tissue thicknesses. Radial dimensions of ice formation were measured in each water bath by a high-precision laser 2 minutes after the onset of cooling. Probe-surface temperatures were recorded by thermocouples. Tissue temperature was measured at depths of 4 mm and 5 mm from the probe-tissue interface. Time to reach a tissue temperature of −20°C was recorded. Results Ice formation increased significantly with lower water-bath temperatures (P < 0.001). Width and depth of ice formation were significantly less for the rigid linear probe (P < 0.012 and P < 0.001, respectively). There was no difference between the probes in the maximal negative temperature reached under different thermal loads or at different tissue depths. The malleable probe achieved significantly lower temperatures at the proximal compared with the distal end (–61.7°C vs −55.0°C, respectively; P < 0.001). A tissue temperature of −20°C was reached earlier at 4 mm than at 5 mm (P < 0.001) and was achieved significantly faster with the 3011 Maze Linear probe (P < 0.021). Conclusions The new malleable probe achieved rapid freezing to clinically relevant levels in up to 5-mm–thick tissue. Both probes maintained their performance under a wide range of thermal loads.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3344
Author(s):  
Aishwarya Gokuldass ◽  
Arianna Draghi ◽  
Krisztian Papp ◽  
Troels Holz Borch ◽  
Morten Nielsen ◽  
...  

Background: Human intratumoral T cell infiltrates can be defined by quantitative or qualitative features, such as their ability to recognize autologous tumor antigens. In this study, we reproduced the tumor-T cell interactions of individual patients to determine and compared the qualitative characteristics of intratumoral T cell infiltrates across multiple tumor types. Methods: We employed 187 pairs of unselected tumor-infiltrating lymphocytes (TILs) and autologous tumor cells from patients with melanoma, renal-, ovarian-cancer or sarcoma, and single-cell RNA sequencing data from a pooled cohort of 93 patients with melanoma or epithelial cancers. Measures of TIL quality including the proportion of tumor-reactive CD8+ and CD4+ TILs, and TIL response polyfunctionality were determined. Results: Tumor-specific CD8+ and CD4+ TIL responses were detected in over half of the patients in vitro, and greater CD8+ TIL responses were observed in melanoma, regardless of previous anti-PD-1 treatment, compared to renal cancer, ovarian cancer and sarcoma. The proportion of tumor-reactive CD4+ TILs was on average lower and the differences less pronounced across tumor types. Overall, the proportion of tumor-reactive TILs in vitro was remarkably low, implying a high fraction of TILs to be bystanders, and highly variable within the same tumor type. In situ analyses, based on eight single-cell RNA-sequencing datasets encompassing melanoma and five epithelial cancers types, corroborated the results obtained in vitro. Strikingly, no strong correlation between the proportion of CD8+ and CD4+ tumor-reactive TILs was detected, suggesting the accumulation of these responses in the tumor microenvironment to follow non-overlapping biological pathways. Additionally, no strong correlation between TIL responses and tumor mutational burden (TMB) in melanoma was observed, indicating that TMB was not a major driving force of response. No substantial differences in polyfunctionality across tumor types were observed. Conclusions: These analyses shed light on the functional features defining the quality of TIL infiltrates in cancer. A significant proportion of TILs across tumor types, especially non-melanoma, are bystander T cells. These results highlight the need to develop strategies focused on the tumor-reactive TIL subpopulation.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Liu Yang ◽  
Guangfu Yin ◽  
Xiaoming Liao ◽  
Xing Yin ◽  
Niansong Ye

Abstract Background This study aims to develop a novel process to establish a standardized manufacturing technique of customized esthetic ceramic bracket system (CCB) which could be endowed with individual color and shape to satisfy patients’ individual demands. Material characteristics and mechanical parameters of CCB were evaluated. Subjects and methods CCB virtual models were designed individually according to patient’s teeth morphology and clinical demands. 3D printing technology, lost-wax technology, and selected glass-ceramic ingots were employed to fabricate CCB. Scanning electron microscopy (SEM) analyses were performed to characterize the surface morphology of CCB and commercially available brackets (Clarity Advanced; Crystalline VII; Inspire ICE; Damon Q). Static and kinetic frictional resistance (FR), shear bond strength (SBS) and adhesive remnant index (ARI) scores were recorded. One-way analyses of variance (ANOVA) and post-hoc Tukey’s HSD multiple tests were used for statistical analyses. Results Multi-color and multi-transparency raw materials facilitated CCB with a wide range of color options and controllable optical properties to satisfy different esthetic demands of individual orthodontic patients. CCB presented same level of FR as commercially available ceramic brackets did. No significant differences (P ≥ 0.05) of SBS were observed among CCB-ES (treated silane), Clarity Advanced and Crystalline VII groups, and CCB-E (no silane) attained the highest ARI mean score 3. In the preliminary clinical trial, CCB presented excellent color-matching and shape-matching appearances similar to natural teeth, which made it highly invisible from social intercourse distance. Conclusions CCB were demonstrated to be an applicable labial orthodontic bracket system with optimized esthetics and biomechanics. We envision that it would be an ideal alternative for patients who pursue esthetic orthodontic treatment but were not likely to take lingual appliances or clear aligners.


Ultrasonics ◽  
2021 ◽  
Vol 110 ◽  
pp. 106272
Author(s):  
Yuanyuan Shen ◽  
Yiling Chen ◽  
Yongpeng Huang ◽  
Xiaojun Zeng ◽  
Lanhui Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document