scholarly journals Identification, Characterization, and Expression Analysis of Spondin-Like and Fasciclin-Like Genes in Neopyropia yezoensis, A Marine Red Alga

Phycology ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 45-59
Author(s):  
Toshiki Uji ◽  
Shinnosuke Ueda ◽  
Hiroyuki Mizuta

Extracellular matrix (ECM) proteins play crucial roles in the regulation of cell proliferation and differentiation. We identified homologous genes encoding ECM proteins that are known to associate with integrins in animal cells in red macroalga Neopyropia yezoensis. Four genes encoding spondin domain-containing proteins (NySPLs) and eight genes encoding fasciclin domain-containing proteins (NyFALs) from N. yezoensis were selected for bioinformatics and expression analysis in order to obtain insights into the roles of ECM proteins for the life cycle. NySPLs had eight β-strands with two contiguous α-helices, which were similar to those of the F-spondin domain of animals. NyFALs had conserved H1 and H2 motifs and a YH motif between the H1 and H2 regions. Quantitative reverse transcription polymerase chain reaction showed that NySPL1–3 and NyFAL8 transcripts were highly accumulated in mature gametophytes that formed the spermatia. Furthermore, expressions of all NySPLs were upregulated in response to the ethylene precursor 1-aminocylopropane-1-carboxylic acid that induces gametogenesis. NyFAL1, 4 were highly expressed in sporophytes, whereas NyFAL2, 3, 5, 6, and 7 were overexpressed in gametophytes, especially at the vegetative stage. These findings facilitate future research on ECM architecture in the unique life cycles of red macroalgae.

2003 ◽  
Vol 17 (1) ◽  
pp. 94-98 ◽  
Author(s):  
Fabio Daumas Nunes ◽  
Fernanda Campos Souza de Almeida ◽  
Renata Tucci ◽  
Suzana Cantanhede Orsini Machado de Sousa

Homeobox genes are regulatory genes encoding nuclear proteins that act as transcription factors, regulating aspects of morphogenesis and cell differentiation during normal embryonic development of several animals. Vertebrate homeobox genes can be divided in two subfamilies: clustered, or HOX genes, and nonclustered, or divergent, homeobox genes. During the last decades, several homeobox genes, clustered and nonclustered ones, were identified in normal tissue, in malignant cells, and in different diseases and metabolic alterations. Homeobox genes are involved in the normal teeth development and in familial teeth agenesis. Normal development and cancer have a great deal in common, as both processes involve shifts between cell proliferation and differentiation. The literature is accumulating evidences that homeobox genes play an important role in oncogenesis. Many cancers exhibit expression of or alteration in homeobox genes. Those include leukemias, colon, skin, prostate, breast and ovarian cancers, among others. This review is aimed at introducing readers to some of the homeobox family functions in normal tissues and especially in cancer.


2018 ◽  
Author(s):  
Mary Mirvis ◽  
Kathleen Siemers ◽  
W. James Nelson ◽  
Tim Stearns

AbstractThe primary cilium is a central signaling hub in cell proliferation and differentiation, and is built and disassembled every cell cycle in most animal cells. Disassembly is critically important: misregulation or delay of disassembly leads to cell cycle defects. The physical means by which cilia are disassembled are poorly understood, and thought to involve resorption of disassembled components into the cell body. To investigate cilium disassembly in mammalian cells, we used rapid live-cell imaging to comprehensively characterize individual disassembly events. The predominant mode of disassembly was rapid cilium loss via deciliation, in which the membrane and axoneme of the cilium was shed from the cell. Gradual resorption was also observed, as well as events in which a period of gradual resorption ended with rapid deciliation. Deciliation resulted in intact shed cilia that could be recovered from culture medium and contained both membrane and axoneme proteins. We modulated levels of katanin and intracellular calcium, two putative regulators of deciliation, and found that excess katanin promotes disassembly by deciliation, independently of calcium. Together, these results demonstrate that mammalian ciliary disassembly involves a tunable decision between deciliation and resorption.


2020 ◽  
Vol 3 (2) ◽  
pp. 216-242 ◽  
Author(s):  
Mayuri Shukla ◽  
Areechun Sotthibundhu ◽  
Piyarat Govitrapong

The revelation of adult brain exhibiting neurogenesis has established that the brain possesses great plasticity and that neurons could be spawned in the neurogenic zones where hippocampal adult neurogenesis attributes to learning and memory processes. With strong implications in brain functional homeostasis, aging and cognition, various aspects of adult neurogenesis reveal exuberant mechanistic associations thereby further aiding in facilitating the therapeutic approaches regarding the development of neurodegenerative processes in Alzheimer’s Disease (AD). Impaired neurogenesis has been significantly evident in AD with compromised hippocampal function and cognitive deficits. Melatonin the pineal indolamine augments neurogenesis and has been linked to AD development as its levels are compromised with disease progression. Here, in this review, we discuss and appraise the mechanisms via which melatonin regulates neurogenesis in pathophysiological conditions which would unravel the molecular basis in such conditions and its role in endogenous brain repair. Also, its components as key regulators of neural stem and progenitor cell proliferation and differentiation in the embryonic and adult brain would aid in accentuating the therapeutic implications of this indoleamine in line of prevention and treatment of AD.   


2020 ◽  
Vol 22 (1) ◽  
pp. 168-175 ◽  
Author(s):  
Lin-Jun Sun ◽  
Chong Li ◽  
Xiang-hao Wen ◽  
Lu Guo ◽  
Zi-Fen Guo ◽  
...  

Background:: Icariin (ICA), one of the main effective components isolated from the traditional Chinese herb Epimedium brevicornu Maxim., has been reported to possess extensive pharmacological actions, including enhanced sexual function, immune regulation, anti-inflammation, and antiosteoporosis. Methods:: Our study was designed to investigate the effect of ICA on cell proliferation and differentiation and the molecular mechanism of OPG/RANKL mediated by the Estrogen Receptor (ER) in hFOB1.19 human osteoblast cells. Results:: The experimental results show that ICA can stimulate cell proliferation and increase the activity of Alkaline Phosphatase (ALP), Osteocalcin (BGP) and I Collagen (Col I) and a number of calcified nodules. Furthermore, the mRNA and protein expression of OPG and RANKL and the OPG/ RANKL mRNA and protein expression ratios were upregulated by ICA. The above-mentioned results indicated that the optimal concentration of ICA for stimulating osteogenesis was 50ng/mL. Subsequent mechanistic studies comparing 50ng/mL ICA with an estrogen receptor antagonist demonstrated that the effect of the upregulated expression is connected with the estrogen receptor. In conclusion, ICA can regulate bone formation by promoting cell proliferation and differentiation and upregulating the OPG/RANKL expression ratio by the ER in hFOB1.19 human osteoblast cells.


2019 ◽  
Vol 20 (7) ◽  
pp. 666-673 ◽  
Author(s):  
Sujuan Ding ◽  
Gang Liu ◽  
Hongmei Jiang ◽  
Jun Fang

The rapid self-renewal of intestinal epithelial cells enhances intestinal function, promotes the nutritional needs of animals and strengthens intestinal barrier function to resist the invasion of foreign pathogens. MicroRNAs (miRNAs) are a class of short-chain, non-coding RNAs that regulate stem cell proliferation and differentiation by down-regulating hundreds of conserved target genes after transcription via seed pairing to the 3' untranslated regions. Numerous studies have shown that miRNAs can improve intestinal function by participating in the proliferation and differentiation of different cell populations in the intestine. In addition, miRNAs also contribute to disease regulation and therefore not only play a vital role in the gastrointestinal disease management but also act as blood or tissue biomarkers of disease. As changes to the levels of miRNAs can change cell fates, miRNA-mediated gene regulation can be used to update therapeutic strategies and approaches to disease treatment.


2021 ◽  
Vol 13 (10) ◽  
pp. 5726
Author(s):  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

Electromobility is a new approach to the reduction of CO2 emissions and the deceleration of global warming. Its environmental impacts are often compared to traditional mobility solutions based on gasoline or diesel engines. The comparison pertains mostly to the single life cycle of a battery. The impact of multiple life cycles remains an important, and yet unanswered, question. The aim of this paper is to demonstrate advances of 2nd life applications for lithium ion batteries from electric vehicles based on their energy demand. Therefore, it highlights the limitations of a conventional life cycle analysis (LCA) and presents a supplementary method of analysis by providing the design and results of a meta study on the environmental impact of lithium ion batteries. The study focuses on energy demand, and investigates its total impact for different cases considering 2nd life applications such as (C1) material recycling, (C2) repurposing and (C3) reuse. Required reprocessing methods such as remanufacturing of batteries lie at the basis of these 2nd life applications. Batteries are used in their 2nd lives for stationary energy storage (C2, repurpose) and electric vehicles (C3, reuse). The study results confirm that both of these 2nd life applications require less energy than the recycling of batteries at the end of their first life and the production of new batteries. The paper concludes by identifying future research areas in order to generate precise forecasts for 2nd life applications and their industrial dissemination.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1565
Author(s):  
María Belén D’Amico ◽  
Guillermo R. Chantre ◽  
Guillermo L. Calandrini ◽  
José L. González-Andújar

Population models are particularly helpful for understanding long-term changes in the weed dynamics associated with integrated weed management (IWM) strategies. IWM practices for controlling L. rigidum are of high importance, mainly due to its widespread resistance that precludes chemical control as a single management method. The objective of this contribution is to simulate different IWM scenarios with special emphasis on the impact of different levels of barley sowing densities on L. rigidum control. To this effect, a weed–crop population model for both L. rigidum and barley life cycles was developed. Our results point out: (i) the necessity of achieving high control efficiencies (>99%), (ii) that the increase of twice the standard sowing density of barley resulted in a reduction of 23.7% of the weed density, (iii) non-herbicide-based individual methods, such as delayed sowing and weed seed removal at harvest, proved to be inefficient for reducing drastically weed population, (iv) the implementation of at least three control tactics (seed removal, delay sowing and herbicides) is required for weed infestation eradication independently of the sowing rate, and (v) the effect of an increase in the sowing density is diluted as a more demanding weed control is reached. Future research should aim to disentangle the effect of different weed resistance levels on L. rigidum population dynamics and the required efficiencies for more sustainable IWM programs.


Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Ya-Wen Chang ◽  
Yu-Cheng Wang ◽  
Xiao-Xiang Zhang ◽  
Junaid Iqbal ◽  
Yu-Zhou Du

The leafminer fly, Liriomyza trifolii, is an invasive pest of vegetable and horticultural crops in China. In this study, a microinjection method based on dsRNA was developed for RNA interference (RNAi) in L. trifolii using genes encoding vacuolar-ATPase (V-ATPase). Expression analysis indicated that V-ATPase B and V-ATPase D were more highly expressed in L. trifolii adults than in larvae or pupae. Microinjection experiments with dsV-ATPase B and dsV-ATPase D were conducted to evaluate the efficacy of RNAi in L. trifolii adults. Expression analysis indicated that microinjection with 100 ng dsV-ATPase B or dsV-ATPase led to a significant reduction in V-ATPase transcripts as compared to that of the dsGFP control (dsRNA specific to green fluorescent protein). Furthermore, lower dsRNA concentrations were also effective in reducing the expression of target genes when delivered by microinjection. Mortality was significantly higher in dsV-ATPase B- and dsV-ATPase D-treated insects than in controls injected with dsGFP. The successful deployment of RNAi in L. trifolii will facilitate functional analyses of vital genes in this economically-important pest and may ultimately result in new control strategies.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3485
Author(s):  
Assunta Sellitto ◽  
Giovanni Pecoraro ◽  
Giorgio Giurato ◽  
Giovanni Nassa ◽  
Francesca Rizzo ◽  
...  

Metabolic reprogramming is a well described hallmark of cancer. Oncogenic stimuli and the microenvironment shape the metabolic phenotype of cancer cells, causing pathological modifications of carbohydrate, amino acid and lipid metabolism that support the uncontrolled growth and proliferation of cancer cells. Conversely, metabolic alterations in cancer can drive changes in genetic programs affecting cell proliferation and differentiation. In recent years, the role of non-coding RNAs in metabolic reprogramming in cancer has been extensively studied. Here, we review this topic, with a focus on glucose, glutamine, and lipid metabolism and point to some evidence that metabolic alterations occurring in cancer can drive changes in non-coding RNA expression, thus adding an additional level of complexity in the relationship between metabolism and genetic programs in cancer cells.


Sign in / Sign up

Export Citation Format

Share Document