scholarly journals Hyperspectral Reflectance Response of Wild Rocket (Diplotaxis tenuifolia) Baby-Leaf to Bio-Based Disease Resistance Inducers Using a Linear Mixed Effect Model

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2575
Author(s):  
Catello Pane ◽  
Angelica Galieni ◽  
Carmela Riefolo ◽  
Nicola Nicastro ◽  
Annamaria Castrignanò

Baby leaf wild rocket cropping systems feeding the high convenience salad chain are prone to a set of disease agents that require management measures compatible with the sustainability-own features of the ready-to-eat food segment. In this light, bio-based disease resistance inducers able to elicit the plant’s defense mechanism(s) against a wide-spectrum of pathogens are proposed as safe and effective remedies as alternatives to synthetic fungicides, to be, however, implemented under practical field applications. Hyperspectral-based proximal sensing was applied here to detect plant reflectance response to treatment of wild rocket beds with Trichoderma atroviride strain TA35, laminarin-based Vacciplant®, and Saccharomyces cerevisiae strain LAS117 cell wall extract-based Romeo®, compared to a local standard approach including synthetic fungicides (i.e., cyprodinil, fludioxonil, mandipropamid, and metalaxyl-m) and a not-treated control. Variability of the spectral information acquired in VIS–NIR–SWIR regions per treatment was explained by three principal components associated with foliar absorption of water, structural characteristics of the vegetation, and the ecophysiological plant status. Therefore, the following model-based statistical approach returned the interpretation of the inducers’ performances at field scale consistent with their putative biological effects. The study stated that compost and laminarin-based treatments were the highest crop impacting ones, resulting in enhanced water intake and in stress-related pigment adjustment, respectively. Whereas plants under the conventional chemical management proved to be in better vigor and health status than the untreated control.

2018 ◽  
Vol 20 (2) ◽  
pp. 232-240 ◽  
Author(s):  
Izabella Mogilnicka ◽  
Marcin Ufnal

Background:Accumulating evidence suggests that microbiota play an important role in host’s homeostasis. Thus far, researchers have mostly focused on the role of bacterial microbiota. However, human gut is a habitat for several fungal species, which produce numerous metabolites. Furthermore, various types of food and beverages are rich in a wide spectrum of fungi and their metabolites.Methods:We searched PUBMED and Google Scholar databases to identify clinical and pre-clinical studies on fungal metabolites, composition of human mycobiota and fungal dysbiosis.Results:Fungal metabolites may serve as signaling molecules and exert significant biological effects including trophic, anti-inflammatory or antibacterial actions. Finally, research suggests an association between shifts in gut fungi composition and human health. Changes in mycobiota composition have been found in obesity, hepatitis and inflammatory bowel diseases.Conclusion:The influence of mycobiota and dietary fungi on homeostasis in mammals suggests a pharmacotherapeutic potential of modulating the mycobiota which may include treatment with probiotics and fecal transplantation. Furthermore, antibacterial action of fungi-derived molecules may be considered as a substitution for currently used antibacterial agents and preservatives in food industry.


2019 ◽  
Vol 14 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Hidayat Hussain ◽  
Ivan R. Green ◽  
Muhammad Saleem ◽  
Khanzadi F. Khattak ◽  
Muhammad Irshad ◽  
...  

Background: Cucurbitacins belong to a group of tetracyclic triterpenoids that display a wide range of biological effects. In the past, numerous cucurbitacins have been isolated from natural sources and many active compounds have been synthesized using the privileged scaffold in order to enhance its cytotoxic effects. Objective: his review covers patents on the therapeutic effects of natural cucurbitacins and their synthetic analogs published during the past decade. By far, the majority of patents published are related to cancer and Structure-Activity Relationships (SAR) of these compounds are included to lend gravitas to this important class of natural products. Methods: The date about the published patents was downloaded via online open access patent databases. Results: Cucurbitacins display significant cytotoxic properties, in particular cucurbitacins B and D which possess very potent effects towards a number of cancer cells. Numerous cucurbitacins isolated from natural sources have been derivatized through chemical modification at the C(2)-OH and C(25)- OH groups. Most importantly, an acyl ester of the C(25)-OH and, iso-propyl, n-propyl and ethyl ether groups of the C(2)-OH demonstrated the most increased cytotoxic activity. Conclusion: The significant cytotoxic effects of natural and semi-synthetic cucurbitacins make them attractive as new drug candidates. Moreover, cucurbitacins have the capability to form conjugates with other anticancer drugs which will synergistically enhance their anticancer effects. The authors believe that in order to get lead compounds, there should be a greater focus on the synthesis of homodimers, heterodimers, and halo derivatives of cucurbitacins. In the opinion of the authors the analysis of the published patents on the cucurbitacins indicates that these compounds can be developed into a regimen to treat a wide spectrum of cancers.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Daniel E. Runcie ◽  
Jiayi Qu ◽  
Hao Cheng ◽  
Lorin Crawford

AbstractLarge-scale phenotype data can enhance the power of genomic prediction in plant and animal breeding, as well as human genetics. However, the statistical foundation of multi-trait genomic prediction is based on the multivariate linear mixed effect model, a tool notorious for its fragility when applied to more than a handful of traits. We present , a statistical framework and associated software package for mixed model analyses of a virtually unlimited number of traits. Using three examples with real plant data, we show that can leverage thousands of traits at once to significantly improve genetic value prediction accuracy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gregory R. Keele ◽  
Jeremy W. Prokop ◽  
Hong He ◽  
Katie Holl ◽  
John Littrell ◽  
...  

AbstractChronic kidney disease (CKD), which can ultimately progress to kidney failure, is influenced by genetics and the environment. Genes identified in human genome wide association studies (GWAS) explain only a small proportion of the heritable variation and lack functional validation, indicating the need for additional model systems. Outbred heterogeneous stock (HS) rats have been used for genetic fine-mapping of complex traits, but have not previously been used for CKD traits. We performed GWAS for urinary protein excretion (UPE) and CKD related serum biochemistries in 245 male HS rats. Quantitative trait loci (QTL) were identified using a linear mixed effect model that tested for association with imputed genotypes. Candidate genes were identified using bioinformatics tools and targeted RNAseq followed by testing in a novel in vitro model of human tubule, hypoxia-induced damage. We identified two QTL for UPE and five for serum biochemistries. Protein modeling identified a missense variant within Septin 8 (Sept8) as a candidate for UPE. Sept8/SEPTIN8 expression increased in HS rats with elevated UPE and tubulointerstitial injury and in the in vitro hypoxia model. SEPTIN8 is detected within proximal tubule cells in human kidney samples and localizes with acetyl-alpha tubulin in the culture system. After hypoxia, SEPTIN8 staining becomes diffuse and appears to relocalize with actin. These data suggest a role of SEPTIN8 in cellular organization and structure in response to environmental stress. This study demonstrates that integration of a rat genetic model with an environmentally induced tubule damage system identifies Sept8/SEPTIN8 and informs novel aspects of the complex gene by environmental interactions contributing to CKD risk.


Author(s):  
Kristy A. Martire ◽  
Bethany Growns ◽  
Agnes S. Bali ◽  
Bronte Montgomery-Farrer ◽  
Stephanie Summersby ◽  
...  

AbstractPast research suggests that an uncritical or ‘lazy’ style of evaluating evidence may play a role in the development and maintenance of implausible beliefs. We examine this possibility by using a quasi-experimental design to compare how low- and high-quality evidence is evaluated by those who do and do not endorse implausible claims. Seven studies conducted during 2019–2020 provided the data for this analysis (N = 746). Each of the seven primary studies presented participants with high- and/or low-quality evidence and measured implausible claim endorsement and evaluations of evidence persuasiveness (via credibility, value, and/or weight). A linear mixed-effect model was used to predict persuasiveness from the interaction between implausible claim endorsement and evidence quality. Our results showed that endorsers were significantly more persuaded by the evidence than non-endorsers, but both groups were significantly more persuaded by high-quality than low-quality evidence. The interaction between endorsement and evidence quality was not significant. These results suggest that the formation and maintenance of implausible beliefs by endorsers may result from less critical evidence evaluations rather than a failure to analyse. This is consistent with a limited rather than a lazy approach and suggests that interventions to develop analytical skill may be useful for minimising the effects of implausible claims.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1447
Author(s):  
Ishaku L. Haruna ◽  
Yunhai Li ◽  
Ugonna J. Ekegbu ◽  
Hamed Amirpour-Najafabadi ◽  
Huitong Zhou ◽  
...  

The myostatin gene (MSTN), which encodes the protein myostatin, is pleiotropic, and its expression has been associated with both increased and decreased adipogenesis and increased skeletal muscle mass in animals. In this study, the polymerase chain reaction, coupled with single strand conformation polymorphism analysis, was utilized to reveal nucleotide sequence variation in bovine MSTN in 410 New Zealand (NZ) Holstein-Friesian × Jersey (HF × J)-cross cows. These cows ranged from 3 to 9 years of age and over the time studied, produced an average 22.53 ± 2.18 L of milk per day, with an average milk fat content of 4.94 ± 0.17% and average milk protein content of 4.03 ± 0.10%. Analysis of a 406-bp amplicon from the intron 1 region, revealed five nucleotide sequence variants (A–E) that contained seven nucleotide substitutions. Using general linear mixed-effect model analyses the AD genotype was associated with reduced C10:0, C12:0, and C12:1 levels when compared to levels in cows with the AA genotype. These associations in NZ HF × J cross cows are novel, and they suggest that this variation in bovine MSTN could be explored for increasing the amount of milk unsaturated fatty acid and decreasing the amount of saturated fatty acid.


Stroke ◽  
2020 ◽  
Vol 51 (9) ◽  
Author(s):  
Amy Brodtmann ◽  
Mohamed Salah Khlif ◽  
Natalia Egorova ◽  
Michele Veldsman ◽  
Laura J. Bird ◽  
...  

Background and Purpose: Brain atrophy can be regarded as an end-organ effect of cumulative cardiovascular risk factors. Accelerated brain atrophy is described following ischemic stroke, but it is not known whether atrophy rates vary over the poststroke period. Examining rates of brain atrophy allows the identification of potential therapeutic windows for interventions to prevent poststroke brain atrophy. Methods: We charted total and regional brain volume and cortical thickness trajectories, comparing atrophy rates over 2 time periods in the first year after ischemic stroke: within 3 months (early period) and between 3 and 12 months (later period). Patients with first-ever or recurrent ischemic stroke were recruited from 3 Melbourne hospitals at 1 of 2 poststroke time points: within 6 weeks (baseline) or 3 months. Whole-brain 3T magnetic resonance imaging was performed at 3 time points: baseline, 3 months, and 12 months. Eighty-six stroke participants completed testing at baseline; 125 at 3 months (76 baseline follow-up plus 49 delayed recruitment); and 113 participants at 12 months. Their data were compared with 40 healthy control participants with identical testing. We examined 5 brain measures: hippocampal volume, thalamic volume, total brain and hemispheric brain volume, and cortical thickness. We tested whether brain atrophy rates differed between time points and groups. A linear mixed-effect model was used to compare brain structural changes, including age, sex, years of education, a composite cerebrovascular risk factor score, and total intracranial volume as covariates. Results: Atrophy rates were greater in stroke than control participants. Ipsilesional hemispheric, hippocampal, and thalamic atrophy rates were 2 to 4 times greater in the early versus later period. Conclusions: Regional atrophy rates vary over the first year after stroke. Rapid brain volume loss in the first 3 months after stroke may represent a potential window for intervention. Registration: URL: https://www.clinicaltrials.gov . Unique identifier: NCT02205424.


2018 ◽  
Vol 36 (08) ◽  
pp. 781-784
Author(s):  
Katherine A. Connolly ◽  
Luciana Vieira ◽  
Elizabeth M. Yoselevsky ◽  
Stephanie Pan ◽  
Joanne L. Stone

Objective To quantify the degree of change in cervical length (CL) over a 3-minute transvaginal ultrasound. Study Design We conducted a prospective observational study of nulliparous patients who underwent routine transvaginal CL screening at the time of their second-trimester ultrasound. We recorded CL at four time points (0, 1, 2, 3 minutes) and compared these values to determine the minute-to-minute change within a single patient. Results A total of 771 patients were included. The mean gestational age was 20.8 weeks (±0.84). We used a linear mixed effect model to assess if each minute during the ultrasound is associated with a change in CL. The intraclass correlation coefficient between minute 0 to minute 3 was 0.82 (95% confidence interval: 0.80, 0.84). This indicates that there is a relatively high within-patient correlation in CL during their ultrasound. Additionally, we stratified patients based on their starting CL; the intraclass correlation coefficient remained high for all groups. We additionally compared CL at each minute. Although there is a statistically significant difference between several time points, the actual difference is small and not clinically meaningful. Conclusion The variation in CL over a 3-minute transvaginal ultrasound examination is not clinically significant. It may be reasonable to conduct this examination over a shorter period.


Sign in / Sign up

Export Citation Format

Share Document