scholarly journals Double-Function Oxygen Scavenger and Aromatic Food Packaging Films Based on LDPE/Polybutadiene and Peanut Aroma

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1310
Author(s):  
Adriana Juan-Polo ◽  
Salvador E. Maestre Pérez ◽  
María Monedero Prieto ◽  
Ana María Tone ◽  
Carmen Sánchez Reig ◽  
...  

The aim of this study was to develop a double function active packaging material for nuts. The packaging solution, on the one hand, integrated polybutadiene (PB) as an oxygen scavenger and, on the other hand, it incorporated peanut aroma (PA) to improve customer’s sensorial experience. Different formulations based on low density polyethylene (LDPE), commercial PA (5 wt %) and PB at two levels (5 wt % and 13 wt %) were obtained by cast film extrusion. The obtained films were compared in terms of their mechanical, structural, optical and thermal properties confirming a plasticizing effect of PA and PB resulting in an increase in the ductility of the polymer and in a slight decrease in the thermal properties, maintaining their transparency. Regarding the oxygen capacity of the films, values of 4.4 mL and 2.7 mL O2 g−1 film were obtained for PE/PA/PB13 and PE/PA/PB5, respectively, after 6 days proving the suitability of the UV irradiation treatment in improving the oxygen absorption capacity of PB without the need of a metal catalyst. The aroma retention capacity into the polymer matrix was also evaluated in the developed formulations. The incorporation of PB in 13 wt % into a LDPE matrix improved the PA retention. This behavior was attributed to the ability of PB in enhancing cross-linking of LDPE as the concentration of PB increases. The results suggested the potential of PE/PB/PB13 films as oxygen scavenger and aromatic food packaging system to offer protection against lipid oxidation in nuts.

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5000
Author(s):  
Bettina Röcker ◽  
Gabriel Mäder ◽  
Fabien Wilhelm Monnard ◽  
Magdalena Jancikova ◽  
Matthias Welker ◽  
...  

Modified calcium carbonates (MCC) are inorganic mineral-based particles with a large surface area, which is enlarged by their porous internal structure consisting of hydroxyapatite and calcium carbonate crystal structures. Such materials have high potential for use as carriers for active substances such as oxygen scavenging agents. Oxygen scavengers are applied to packaging to preserve the quality of oxygen-sensitive products. This study investigated the potential of MCC as a novel carrier system for unsaturated fatty acids (UFAs), with the intention of developing an oxygen scavenger. Linoleic acid (LA) and oleic acid (OA) were loaded on MCC powder, and the loaded MCC particles were characterized and studied for their oxygen scavenging activity. For both LA and OA, amounts of 20 wt% loading on MCC were found to provide optimal surface area/volume ratios. Spreading UFAs over large surface areas of 31.6 and 49 m2 g−1 MCC enabled oxygen exposure and action on a multitude of molecular sites, resulting in oxygen scavenging rates of 12.2 ± 0.6 and 1.7 ± 0.2 mL O2 d−1 g−1, and maximum oxygen absorption capacities of >195.6 ± 13.5 and >165.0 ± 2.0 mL g−1, respectively. Oxygen scavenging activity decreased with increasing humidity (37–100% RH) and increased with rising temperatures (5–30 °C). Overall, highly porous MCC was concluded to be a suitable UFA carrier for oxygen scavenging applications in food packaging.


Author(s):  
Arini Ulfah M.R ◽  
Syahrul Humaidi ◽  
Kurnia Sembiring

Biofoam material has been made for application of styrofoam substitute food packaging material from a mixture of raw materials: taro leaf powder and PVAc through a hot compaction method with variations of the composition of taro leaf powder: PVAc (80:20)% wt, (75:25)% wt, (70 : 30)% wt, (65:35) wt%, (60:40) wt%, (55:45)% wt, (50:50)% wt and (45:50)% wt. The first stage of taro leaves was blended and sifted with 100 mesh particle size. The second stage of the leaf powder of taro mixed with wet mixing was then mixed with PVAc as a matrix. The third stage of the homogeneous mixture was then put into the mold then compressed by heat to make it more dense with a pressure of 100 MPa and held for 10 minutes at 60 oC. Each biofoam sample that is ready to be characterized includes: physical properties (density, water absorption, functional groups and biodegredability), mechanical properties (tensile strength, elastic modulus, and elongation) and thermal properties (melting points). The characterization results showed that taro leaf powder: the optimum PVAc was (45: 55) wt% with a density value of 0.744 x 103 kg/m3, water absorption capacity of 1.765%, composed of OH and CH groups of PVAc and cellulose and C = C groups of lignin so that it has degrading properties of 91.2% for 50 days. Mechanical properties with tensile strength of 0.357 MPa, elastic modulus of 1.449 MPa, and elongation of 246.416%. Thermal properties with a melting point of 350.21 oC whose results have met the standards of conventional brand Synbra Technology. The results of biofoam material based on composite taro leaves and PVAc can be applied as food packaging.


2019 ◽  
Vol 36 (3) ◽  
pp. 260-284
Author(s):  
Sven Sängerlaub ◽  
Carlotta Elfi Glas ◽  
Daniel Schlemmer ◽  
Kajetan Müller

We investigated the influence of multiple extrusions of poly-(ethylene terephthalate) (PET) blended with a polymer-based oxygen scavenger. PET and PET blended with an oxygen scavenger additive were extruded up to four times to polymer strands. They were chilled in a water bath and cut to granules. Between the extrusions, the granules were dried at (only) 60°C to avoid the oxygen scavenger losing its reactivity. The water content was up to 0.5 wt.-% and therefore up to factor 100 higher than the recommended water content for PET extrusion. For further analysis, films were extruded and bottles were stretch-blow-molded. Due to polymer degradation and the recycled PET blend viscosity being too low, this material had to be blended with virgin PET in order to be processable. We used 33 wt.-% recycled PET and 66 wt.-% virgin PET ratio. The impact of the thermomechanical stress by multiple extrusions was investigated by several test methods: analysis of the melt pressure in the extruder barrel during extrusion, intrinsic viscosity and melt flow rate, microscopy, differential scanning calorimetry, color value measurements (L*a*b* values), tensile testing, compression testing, and oxygen absorption measurements. The intrinsic viscosity reduced after four re-extrusions in a compounder from 0.82 dl/g to 0.35 dl/g for PET with scavenger and to 0.41 dl/g for pure PET. This, even though low, difference can be explained by the slightly higher PET degradation due to the oxygen scavenger. We found slightly better mechanical properties (yield stress, Young’s modulus) for pure PET films compared to PET blended with an oxygen scavenger. At up to three extrusions, there was little influence on these properties. The extruded material with 3 wt.-% oxygen scavenger additive has an oxygen absorption capacity of 9.5 mg oxygen per 1 g of granules, i.e., the scavenger additive absorbed about 300 mg oxygen per 1 g of additive. Our results are relevant for in-house recycling processes of PET with oxygen scavenger.


2017 ◽  
Vol 2 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Angelique Mahieu ◽  
Caroline Terrie ◽  
Nathalie Leblanc

Abstract A trilayer film based on thermoplastic starch (TPS) for the core layer and poly(ε-caprolactone) (PCL) for the skin layers was obtained by coextrusion. Ascorbic acid and iron powder were added at respectively 15% and 1.5% w/w in the TPS layer for their capacity to act as oxygen scavenger, making the film usable as active food packaging. This study demonstrates that these compounds also play a role in the interactions between the different layers. FTIR measurements show that ascorbic acid migrates at the interface between TPS and PCL, where it acts as a compatibiliser between both polymers, probably by creating new interactions between polar functions of both polymers. This leads to a better adhesion of the different layers, demonstrated by the increase of the adhesion energy from 4.10−3 N·mm−1 for the multilayer film TPS-PCL to 12.10−3 N·mm−1 for the multilayer film containing the active components. Thanks to this compatibilising effect, the mechanical properties of the multilayer film containing ascorbic acid and iron are widely improved with an average maximal tensile strength of 7 MPa, against 3.7 MPa for the multilayer film without the active components and with an elongation at break of respectively 1450% against 290%. However, despite the hydrophobicity of PCL, the water sorption of the TPS-based layer is only slightly reduced. The multilayer film shows active oxygen scavenging properties but the rate of this reaction is divided by two compared to the active film without PCL layers (15 days to reach less than 1% oxygen for the active film without PCL layers and approximately 30 days to reach the same oxygen level with the multilayer active film).


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Olugbenga O. Oluwasina ◽  
Bolaji P. Akinyele ◽  
Sunday J. Olusegun ◽  
Olayinka O. Oluwasina ◽  
Nelcy D. S. Mohallem

AbstractThe adverse environmental effects of petroleum-based packaging plastics have necessitated the need for eco-friendly bioplastics. Most bioplastics are starch-based and are not without drawbacks, hence there is the need for their properties to be improved. In this study, the effect of varying concentrations of dialdehyde starch and silica solutions on the physical, mechanical, biodegradable, surface topology, and thermal properties of the bioplastic films was examined. The additive concentrations were varied from 60 to 100%. The bioplastic films produced with dialdehyde starch solution recorded better moisture content (6.62–11.85%), bioplastic film solubility (4.23–7.90%), and tensile strength (1.63–3.06 MPa), against (11.24–14.26%), (7.77–19.27%) and (0.53–0.73 MPa) respectively for bioplastic films produced with silica solution. The atomic force microscopy analysis; root-mean-square roughness, kurtosis, and skewness revealed better miscibility and compatibility between the starch matrix and the dialdehyde solution than between the starch matrix and the silica solution. Bioplastic with added dialdehyde starch solution has better tensile strength and long biodegradability than that with silica solution. The research has demonstrated that bioplastic film produced with starch and dialdehyde starch solution has better properties than the one produced with starch and silica solution. The properties evaluation results of the bioplastic films thus demonstrated their aptness for food packaging applications. Graphic abstract


2009 ◽  
Vol 15 (2) ◽  
pp. 159-168 ◽  
Author(s):  
M.J. Galotto ◽  
S.A. Anfossi ◽  
A. Guarda

Absorption kinetics of three different forms of the same iron-based oxygen scavenger were studied. Oxygen scavengers were used as pellet, sheet, and film materials. Two scavenger concentrations were used for sheet and film forms. Scavenger samples were analyzed at 75 or 100% relative humidities and stored at 5, 15, and 25°C. Oxygen concentration in the headspace was measured as a function of time. Absorption kinetics was best described by the Chapman-Richards empirical growth model rather than by a first-order reaction. Arrhenius behavior was observed for variations in the final absorption rate with temperature. Absorption capacities, final absorption rates, and activation energies were evaluated and discussed. Scavenger concentration, relative humidity, and temperature effects on kinetic parameters were studied for each experimental condition. Temperature was the most important factor that affected kinetic parameters. At the relative humidity levels studied, any important effect on kinetic parameters was not observed, except on absorption capacities.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2782
Author(s):  
Yong-Rok Kwon ◽  
Jung-Soo Kim ◽  
Dong-Hyun Kim

A superabsorbent polymer (SAP) was synthesized by copolymerizing itaconic acid and vinyl sulfonic acid. The typically low absorbency of itaconic acid-based SAPs under mechanical loads was improved by introducing surface crosslinking. Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the synthesis and surface-crosslinking reactions in the SAP. Various conditions for surface-crosslinking reactions, such as the surface-crosslinking solution, content of surface-crosslinking agent, and reaction temperature, were explored and correlated with the gel strength and absorption characteristics of the resulting SAP particles. The distilled water content in the surface-crosslinking solution strongly influenced the absorption capacity of the SAP, but this sensitivity decreased when acetone was used as a co-solvent. Itaconic acid-based SAP that was crosslinked under optimal conditions exhibited centrifuge retention capacity and absorbency under a load of 31.1 and 20.2, respectively.


2019 ◽  
Vol 27 (8) ◽  
pp. 496-506
Author(s):  
Arnold Cabanillas ◽  
Julio Nuñez ◽  
JP Cruz-Tirado ◽  
R Vejarano ◽  
Delia R Tapia-Blácido ◽  
...  

Pineapple shell, considered a waste in the juice industry, was used as a reinforcement material to produce biodegradable foam trays (FTs) based on cassava starch by a compression molding process. These foams were prepared with different starch/fiber ratios and then were characterized according to their microstructure and physical and mechanical properties. The starch/fiber ratio of 95/5 showed the lowest values of thickness and density (2.58 mm and 367 kg m−3, respectively). There was a good distribution of the pineapple shell fiber throughout the polymeric matrix. All FTs showed a semicrystalline structure and 95/5 ratio showed the highest crystallinity index (CI) value (39%). In addition, this ratio improved the tensile strength of the FTs, obtaining similar values to expanded polystyrene (EPS) samples, used as the reference material. Nevertheless, all FTs reinforced with pineapple shell fiber showed high water absorption capacity (WAC); therefore, future studies should focus on to improve the physicochemical and structural properties of the cassava starch-based foams, considering the promising potential of this novel biodegradable material for dry food packaging, such as a viable alternative to reduce the use of petroleum-based materials such as commercial EPS trays.


Sign in / Sign up

Export Citation Format

Share Document