scholarly journals Coloration and Multi-Functionalization of Polypropylene Fabrics with Selenium Nanoparticles

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2483
Author(s):  
Tarek AbouElmaaty ◽  
Shereen A. Abdeldayem ◽  
Shaimaa M. Ramadan ◽  
Khaled Sayed-Ahmed ◽  
Maria Rosaria Plutino

In this study, we developed a new approach for depositing selenium nanoparticles (SeNPs) into polypropylene (PP) fabrics via a one-step process under hydrothermal conditions by using an IR-dyeing machine to incorporate several functionalities, mainly coloration, antibacterial activity and ultraviolet (UV) protection. The formation, size distribution, and dispersion of the SeNPs were determined using X-ray diffraction (XRD), ultraviolet-visible (UV/Vis), transmission electron microscopy (TEM) and the color strength, fastness, antibacterial properties, and UV protection of the treated fabrics were also explored. The UV-Vis spectra and TEM analysis confirmed the synthesis of spherical well-dispersed SeNPs and the XRD analysis showed the successful deposition of SeNPs into PP fabrics. The obtained results demonstrate that the SeNPs-PP fabrics is accompanied by a noticeable enhancement in measurements of color strength, fastness, and UV-protection factor (UPF), as well as excellent antibacterial activity. Viability studies showed that SeNPs-PP fabrics are non-toxic against wi-38cell line. In addition, the treated SeNPs-PP fabrics showed an increase in conductivity. The obtained multifunctional fabrics are promising for many industrial applications such as the new generation of curtains, medical fabrics, and even automotive interior parts.

2021 ◽  
Vol 16 (3) ◽  
Author(s):  
Asifa Mushtaq ◽  
Musharaf Gul ◽  
Seema Rawat ◽  
Jay Krishan Tiwari

Actinomycetes are prolific producers of secondary metabolites majority of which have phenomenal industrial applications. Actinomycetes recovered from cave habitats have generated a considerable interest among the scientific community with respect to their adaptability under such unique environmental conditions. Garhwal Himalaya, Uttarakhand abodes several pristine caves which have not been previously explored for the presence of actinomycetes. The present study has been undertaken to assess the in vitro antibacterial properties of actinomycetes recovered from some of the caves located in Garhwal Himalayan region. In the present study, a total of 127 actinomycetes were isolated from three distinct caves. Majority of the isolates exhibited antibacterial activity against gram-positive bacteria. Actinomycetes isolates RCM1 and SCMM1 were observed to evince promising antibacterial activities. Members of Streptomyces genus were found to be predominant in all the samples.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mahsa Vahdati ◽  
Tahereh Tohidi Moghadam

AbstractIn the light of promising potency of selenium nanoparticles in biomedical applications, this is the first study to report the synergistic antibacterial activity of these nanoparticles and lysozyme. The nanohybrid system was prepared with various concentrations of each component. Resistance of Escherichia coli and Staphylococcus aureus was compared in the presence of individual Nano and Bio counterparts as well as the nanohybrid system. Upon interaction of SeNPs with Lysozyme, the nanohybrid system efficiently enhanced the antibacterial activity compared to the protein. Therefore, SeNPs play an important role in inhibition of bacterial growth at very low concentrations of protein; whereas very high amount of the protein is required to inhibit bacterial growth individually. On the other hand, lysozyme has also played a vital role in antibacterial property of SeNPs, inducing 100% inhibition at very low concentration of each component. Hence, presence of both nano and bio counterparts induced vital interplay in the Nanohybrid system. The aged samples also presented good stability of SeNPs both as the intact and complex form. Results of this effort highlight design of nanohybrid systems with synergistic antibacterial properties to overcome the emerging antibiotic resistance as well as to define fruitful applications in biomedicine and food safety.


2021 ◽  
Author(s):  
M.M. Abd El-Hady ◽  
A. Farouk ◽  
S. El-Sayed Saeed ◽  
S. Zaghloul

Abstract Medical textiles are one of the most rapidly growing parts of the technical textiles sector of the textile industry. This work was developed for biocompatible materials of curcumin / TiO2 nanocomposite fabricated on the surface of cotton fabric for medical applications. Cotton fabric was pretreated with three crosslinking agents namely, citric acid, Quat-188, and GPTMS. Applying nanocomposite on modified cotton fabric using pad-dry cure method. The chemistry and morphology of modified fabrics are examined by Fourier-transformed infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. In addition, the chemical mechanism for nanocomposite modified fabric was reported. UV protection (UPF) and antibacterial properties against Gram - positive S. aureus and Gram - negative E. coli bacterial strains were investigated. The durability of fabrics to 20 washing cycles was also examined. Results demonstrated that nanocomposite modified cotton fabric exhibited superior antibacterial activity against Gram - negative bacteria that Gram - positive bacteria and excellent UV protection properties. Moreover, good durability was obtained, possibly due to the effect of the crosslinker used. Among the three pre-modification of cotton fabric, Quat-188 modified fabric reveals the highest antibacterial activity comparing with citric acid or GPTMS modified fabrics. This outcome suggested that curcumin / TiO2 nanocomposite Quatt-188 modified cotton fabric could be used in biomedical textile as antibacterial properties.


2020 ◽  
Vol 11 (4) ◽  
pp. 11666-11678

The main goal of this study is to modify cotton as cellulose-based fabrics through cationization to improve its dyeing with acid dyes and its antibacterial. Quat-188 was applied to cotton to prepare cationized cotton, overcoming the negative charges between cotton and acid dyes during the dyeing process without using any electrolyte via the pad-dry-cure method. Then the cationized cotton fabrics were treated with the prepared silver nanoparticles to improve their antibacterial properties. The untreated and treated cotton fabrics were dyed with two acid dyes Acid Brilliant Blue PB 100% (acid blue 25; AB25) and Acid Metanil Yellow MT 100% (acid yellow 36) at concentrations of 2%, 4%, and 6% of by exhaust method. Colour strength, color, and washing fastness of untreated and treated cotton fabrics were studied. Antibacterial properties of fabrics were also evaluated against S. aureus and E. coli by using the disk diffusion method. Dyeing properties showed that the treated cotton fabrics significantly improved color strength and fastness properties (light, washing, perspiration, and rubbing). Also, the antibacterial properties of treated cotton fabrics showed antibacterial activity towards tested bacteria. This study reveals that modified cotton fabrics via cationization with Quat-188 and AgNPs have multifunctional properties from their ability for acid dyes and their higher antibacterial activity towards Gram-positive and Gram-negative bacteria that is can be used in many applications.


Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 74
Author(s):  
Tarek Abou Elmaaty ◽  
Khaled Sayed-Ahmed ◽  
Radwan Mohamed Ali ◽  
Kholoud El-Khodary ◽  
Shereen A. Abdeldayem

The development of antibacterial coatings for footwear components is of great interest both from an industry and consumer point of view. In this work, the leather material was developed taking advantage of the intrinsic antibacterial activity and coloring ability of selenium nanoparticles (SeNPs). The SeNPs were synthesized and implemented into the leather surface by using ultrasonic techniques to obtain simultaneous coloring and functionalization. The formation of SeNPs in the solutions was evaluated using UV/Vis spectroscopy and the morphology of the NPs was determined by transmission electron microscopy (TEM). The treated leather material (leather/SeNPs) was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The effects of SeNPs on the coloration and antibacterial properties of the leather material were evaluated. The results revealed that the NPs were mostly spherical in shape, regularly distributed, and closely anchored to the leather surface. The particle size distribution of SeNPs at concentrations of 25 mM and 50 mM was in the range of 36–77 nm and 41–149 nm, respectively. It was observed that leather/SeNPs exhibited a higher depth of shade compared to untreated ones, as well as excellent fastness properties. The results showed that leather/SeNPs can significantly enhance the antibacterial activity against model of bacteria, including Gram-positive bacteria (Bacillus cereus) and Gram-negative bacteria (Pseudomonas aeruginosa, Salmonella typhi and Escherichia coli). Moreover, the resulting leather exhibited low cytotoxicity against HFB4 cell lines. This achievement should be quite appealing to the footwear industry as a way to prevent the spread of bacterial infection promoted by humidity, poor breathability and temperature which promote the expansion of the microflora of the skin.


2018 ◽  
Vol 89 (7) ◽  
pp. 1166-1179 ◽  
Author(s):  
Pisutsaran Chitichotpanya ◽  
Penwisa Pisitsak ◽  
Chayanisa Chitichotpanya

This study investigated the enhancement of the ultraviolet (UV) protection and antibacterial properties of functionalized silk fabrics using a simple, inexpensive and environmental friendly approach. We demonstrated the in situ synthesis of copper nanoparticles (CuNPs) in a silk sericin (SS) matrix, using ascorbic acid as both a reducing agent and antioxidant. Development and optimization was achieved using a central composite design (CCD) in conjunction with the response surface methodology (RSM). The goal was to identify the concentrations of CuSO4 and SS that produced the optimal balance between UV protection and antibacterial activity, when tested against Escherichia coli and Staphylococcus aureus. The SS-CuNP bio-nanocomposites were characterized using scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. Statistical analyses indicated that an empirical second-order polynomial could accurately describe the UV protective factor, % reduction of S. aureus and % reduction of E. coli. The three-dimensional response surface graphs showed that the optimal concentrations of CuSO4 and SS were 2380 and 9500 ppm, respectively. To confirm that the levels identified using RSM were optimal in practice, performance evaluations were conducted. These investigated the durability and stability of UV protection and antibacterial activity after repeated washing cycles. The results suggest that these bio-nanocomposites have great potential for the multifunctionalization of silk fibers.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
M. M. AbdElhady

Synthesis of chitosan/ZnO nanoparticles was performed using different concentrations of ZnO at different temperatures. Nanoparticles of ZnO/chitosan were prepared in rod form with average length 60 nm and average width 5–15 nm. Thus, obtained nanoparticles of ZnO/chitosan were characterized using UV spectrophotometer, FTIR, TEM, X-ray, and SEM. Size and shape of chitosan/ZnO nanoparticles relied on conditions of their synthesis. Notably, chitosan/ZnO in rod form with average length of 60 nm and average width 5–15 nm could be achieved. Application of chitosan/ZnO nanoparticles to cotton fabric conferred on the latter antibacterial and UV protection properties. Cotton fabric was characterized using SEM, ultraviolet protection factor (UPF) rating, and antibacterial (gram-positive and gram-negative) characteristics. Finished cotton fabric exhibited good antibacterial properties against gram-positive and gram-negative bacteria. The UV testes indicated a significant improvement in UV protection of finished cotton fabric which is increasing by increasing the concentration of nanoparticles of ZnO/chitosan.


2020 ◽  
Vol 9 (40) ◽  
pp. 2947-2950
Author(s):  
Shabbarish Chockalingam ◽  
Preetha S ◽  
Jeevitha M ◽  
Lavanya Pratap

BACKGROUND Capparis decidua and Selenium have several antibacterial properties along with other highly desirable properties, but for long they have not been explored. Nanoparticles are efficient in transporting drugs as they are easily absorbed by the body due to their small size. We wanted to evaluate the antibacterial activity of Capparis decidua mediated selenium nanoparticles against Streptococcus mutans, Lactobacillus, and Enterococcus faecalis. METHODS 4 wells were dug in three Petri dishes of Agar which were coated with a layer of bacteria, Streptococcus mutans, Lactobacillus and Enterococcus faecalis. The wells were filled with different amounts of the extract in the order of 50 µL, 100 µL and 150 µL with the fourth well having 50 µL of the antibiotic. Zone of inhibition was measured. RESULTS After the measurements were made, the results obtained showed good zone of inhibition against Streptococcus mutans, Lactobacillus and Enterococcus faecalis. CONCLUSIONS This study suggests that Capparis decidua fruit mediated with Selenium Nanoparticles have a high antibacterial activity. KEY WORDS Antibacterial Effects, Capparis decidua, Selenium, Nanoparticles


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 4027
Author(s):  
M. M. Abd El-Hady ◽  
Asmaa Farouk ◽  
S. El-Sayed Saeed ◽  
Saad Zaghloul

Medical textiles are one of the most rapidly growing parts of the technical textiles sector in the textile industry. This work aims to investigate the medical applications of a curcumin/TiO2 nanocomposite fabricated on the surface of cotton fabric. The cotton fabric was pretreated with three crosslinking agents, namely citric acid, 3-Chloro-2-hydroxypropyl trimethyl ammonium chloride (Quat 188) and 3-glycidyloxypropyltrimethoxysilane (GPTMS), by applying the nanocomposite to the modified cotton fabric using the pad-dry-cure method. The chemistry and morphology of the modified fabrics were examined by Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. In addition, the chemical mechanism for the nanocomposite-modified fabric was reported. UV protection (UPF) and antibacterial properties against Gram-positive S. aureus and Gram-negative E. coli bacterial strains were investigated. The durability of the fabrics to 20 washing cycles was also examined. Results demonstrated that the nanocomposite-modified cotton fabric exhibited superior antibacterial activity against Gram-negative bacteria than Gram-positive bacteria and excellent UV protection properties. Moreover, a good durability was obtained, which was possibly due to the effect of the crosslinker used. Among the three pre-modifications of the cotton fabric, Quat 188 modified fabric revealed the highest antibacterial activity compared with citric acid or GPTMS modified fabrics. This outcome suggested that the curcumin/TiO2 nanocomposite Quat 188-modified cotton fabric could be used as a biomedical textile due to its antibacterial properties.


2021 ◽  
Author(s):  
Samadhan R. Waghmode ◽  
Amol A. Dudhane ◽  
Vaibhav P. Mhaindarkar

The biosynthesis of silver nanoparticles (AgNPs) has become more significant in the recent years owing to its applications in catalysis, imaging, drug delivery, nano-device fabrication and in medicine. We propose the synthesis of silver nanoparticles from the plant extract of Syzygium cumini and evaluation of its antibacterial and chemocatalytic potential. Synthesis of AgNPs carried out by using aqueous silver nitrate. The UV–Vis absorption spectrum of the synthesized AgNPs showed a broad absorption peak at 470 nm. TEM analysis shows the morphology of AgNPs as a hexagonal matrix with average particle size is about 50 nm. XRD analysis displays the crystalline structure of AgNPs. The presence of elemental silver was confirmed with EDX analysis. FTIR analysis shows that amide groups present in proteins are dominant reducing agents and play an important role in the bioreduction of Ag+ ions to Ag0. The bioreduced AgNPs demonstrated significant catalytic properties in a reduction reaction of 4-nitrophenol to 4-aminophenol using NaBH4 in an aqueous condition. The biosynthesized AgNPs have potent antibacterial activity against common clinical pathogens. Considering the remarkable antibacterial activity against common pathogenic microorganisms, AgNPs can be used in the pharmaceutical industries.


Sign in / Sign up

Export Citation Format

Share Document