scholarly journals Multifunction Finishing of Cellulose Based Fabrics via 3-Chloro-2-Hydroxypropyl Trimethyl Ammonium Chloride (Quat-188) and Silver Nanoparticles (AgNPs) to Improve its Dyeability and Antibacterial

2020 ◽  
Vol 11 (4) ◽  
pp. 11666-11678

The main goal of this study is to modify cotton as cellulose-based fabrics through cationization to improve its dyeing with acid dyes and its antibacterial. Quat-188 was applied to cotton to prepare cationized cotton, overcoming the negative charges between cotton and acid dyes during the dyeing process without using any electrolyte via the pad-dry-cure method. Then the cationized cotton fabrics were treated with the prepared silver nanoparticles to improve their antibacterial properties. The untreated and treated cotton fabrics were dyed with two acid dyes Acid Brilliant Blue PB 100% (acid blue 25; AB25) and Acid Metanil Yellow MT 100% (acid yellow 36) at concentrations of 2%, 4%, and 6% of by exhaust method. Colour strength, color, and washing fastness of untreated and treated cotton fabrics were studied. Antibacterial properties of fabrics were also evaluated against S. aureus and E. coli by using the disk diffusion method. Dyeing properties showed that the treated cotton fabrics significantly improved color strength and fastness properties (light, washing, perspiration, and rubbing). Also, the antibacterial properties of treated cotton fabrics showed antibacterial activity towards tested bacteria. This study reveals that modified cotton fabrics via cationization with Quat-188 and AgNPs have multifunctional properties from their ability for acid dyes and their higher antibacterial activity towards Gram-positive and Gram-negative bacteria that is can be used in many applications.

Biomedika ◽  
2012 ◽  
Vol 4 (2) ◽  
Author(s):  
Dr. Muhtadi , MSi. ◽  
Ria Ambarwati ◽  
Ratna Yuliani

Belimbing wuluh (Averrhoa bilimbi Linn.) is a tropical plant that has antibacterial properties. The purpose of this study was to test the antibacterial activity of bark Belimbing wuluh against Klebsiella pneumoniae and Staphylococcus epidermidis and their bioautography. Extraction methods used to research is method maceration with a solvent ethanol 96 %. Fractinations done by method partition liquid-liquid with a separating funnel. Test performed in this research covering identi� cation bacteria, the sensitivity bacteria, antibacterial activity, thin layer chromatography, bioautography. The result of antibacterial activity ethanol extract of disk diffusion method with concentrations 400 μg/disk, 800 μg/disk, 1600 μg/disk is 8±0,5; 10,34±0,58; 12,17±0,76 on Klebsiella pneumoniae, 10,17±0,29; 11±0; 11.5±0 on Staphylococcus epidermidis, n-hexane fraction with concentration 400 μg/disk, 800 μg/disk, 1600 μg/disk is 8,34±0,29; 9,34±0,29; 10,84±0,76 on Klebsialla pneumoniae, 8,5±0,5; 9,34±0,29; 10,67±0,29 on Staphylococcus epidermidis, ethyl acetate fraction with concentration 400 μg/disk, 800 μg/disk, 1600 μg/disk is 9,17±0,29; 10,34±0,29; 11,17±0,29 on Klebsiella pneumoniae and 9,5±0,5; 10,67±0,29; 12,67±1,26 on Staphylococcus epidermidis, ethanol-water fractions with concentration 400 μg/disk, 800 μg/ disk, 1600 μg/disk is 8,17±0,29; 9,17±0,29; 10±0 on Klebsiella pneumoniae, 9±0; 9,67±0,29; 10,34±0,29 on Staphylococcus epidermidis. The TLC show chemical compounds contained in the ethanol extract, n-heksan fraction, ethyl acetate fraction, and ethanol-water fraction is a compound of the saponins, alkaloids, � avonoids and phenolic. Bioautography showed that ethanol extracts, n-heksan faction, ethyl acetate fraction, and etanol-airfaction Belimbing wuluh (Averrhoa bilimbi Linn.) bark have not antibacterial activity because there is no clear area around on plate TLC.Keywords: Belimbing wuluh (Averrhoa bilimbi Linn.), ethanol extract, fractination, antibacterial, bioautogra� .


2021 ◽  
Vol 13 (7) ◽  
pp. 1304-1309
Author(s):  
Hamed A. Ghramh ◽  
Rahmah N. Al-Qthanin ◽  
Zubair Ahmad ◽  
Essam H. Ibrahim ◽  
Mona Kilany ◽  
...  

ABSTRACTThis article reports on the silver nanoparticles (AaAgNPs) that were green-synthesized by using Artemisia annua L. extract (AaExt) and their collective biological applications. Active biomolecules in the extract and extract containing AgNPs were characterized using Fourier-transform-infrared-spectroscopy (FTIR) and AgNPs were monitored by UV/vis spectroscopy and SEM (scanning electron microscopy) analysis. The size of the particle is around 100 nm. The antibacterial activity was measured by the disk diffusion method against the Gram-negative/positive pathogenic bacteria. The extract and extract containing AgNPs showed a significant antibacterial activity. Cytotoxic potential of the synthesized AgNPs was analyzed against the rat splenocytes. The results showed that there were cytotoxic effects of A. annua leaves extract but stimulatory effects when the extract contained AgNPs on normal splenocytes. Extract of A. annua showed very little increase in liver enzymes. Regarding the larvicidal activity, the extract containing AgNPs was more effective than the crude leaves extract against 4th instar larvae of Culex pipiens (LC50 = 171.378 ppm) compared to the plant extract (LC50 = 5389.726 ppm) by about 31.449 folds.


2016 ◽  
Vol 60 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Lia M. Junie ◽  
Mihaela L. Vică ◽  
Mirel Glevitzky ◽  
Horea V. Matei

AbstractThe first aim of the study was to compare the antibacterial activity of several types of honey of different origins, against some bacterial resistant strains. The strains had been isolated from patients. The second aim was to discover the correlations between the antibacterial character of honey and the physico-chemical properties of the honey. Ten honey samples (polyfloral, linden, acacia, manna, and sunflower) from the centre of Romania were tested to determine their antibacterial properties against the following bacterial species: Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Salmonella enterica serovar Typhimurium, Bacillus cereus, Bacillus subtilis, and Listeria monocytogenes. Bacterial cultures in nutrient broth and the culture medium Mueller-Hinton agar were used. The susceptibility to antibiotics was performed using the disk diffusion method. All honey samples showed antibacterial activity on the isolated bacterial strains, in particular polyfloral (inhibition zone 13-21 mm in diameter) - because it is the source of several plants, and manna (inhibition zone 13-19.5 mm in diameter), and sunflower (inhibition zone 14-18.5 mm in diameter). Pure honey has a significant antibacterial activity against some bacteria which are resistant to antibiotics. Bacterial strains differed in their sensitivity to honeys. Pseudomonas aeruginosa and Staphylococcus aureus were the most sensitive. The present study revealed that honey antibacterial activity depends on the origin of the honey. We also found that there was a significant correlation between antibacterial activity of honeys and the colour of the honey but not between acidity and pH. The statistical analysis showed that the honey type influences the antibacterial activity (diameter of the bacterial strains inhibition zones).


2021 ◽  
Vol 11 (5) ◽  
pp. 13652-13666

Replacement of conventional chemicals with modern fewer hazards one has great attention via green chemistry. Chitosan nanoparticles (CSNPs) were prepared from the reaction of chitosan (0.2 g/100 ml) with tripolyphosphate (o.1 g/100 ml) through the ionotropic gelation method. CSNPs with different concentrations were used for cotton fabrics to impart antimicrobial activity and enhance their dyeing affinity towards acid dyes. FT-IR spectroscopy and TEM imaging were used to characterized CSNPs. SEM and TGA. Effect of CSNPs concentrations on cotton fabric dyeing affinity was recorded from colorimetric data. The antimicrobial activity of treated dyed fabrics was evaluated via disk diffusion method against S. aureus, E. coli, Candida, and Aspergillus Niger. Results have shown that cotton fabrics treated with 0.3 g/100 ml record the highest K/S values, Corresponding to the highest dyeing affinity towards acid dyes. In addition, treated dyed cotton fabrics were showed higher antimicrobial activity towards tested microorganisms because of the presence of CSNPs. Morphological studies on the untreated, treated, and treated dyed cotton fabrics via SEM imaging confirmed that CSNPs coated cotton fabrics. In addition, the light and washing fastness properties of these fabrics confirmed their durability. Therefore, CSNPs were used to impart cotton fabrics' antibacterial activity and improve their dyeability with acid dye.


2019 ◽  
Vol 9 (1-s) ◽  
pp. 196-200
Author(s):  
G Amalorpavamary ◽  
G Dineshkumar ◽  
K Jayaseelan

In recent times, plant-mediated synthesis of nanoparticles has garnered wide interest owing to its inherent features such as rapidity, simplicity, eco-friendliness and cheaper costs. For the first time, silver nanoparticles were successfully synthesized using Phyllanthus niruri leaf extract in the current investigation. The silver nanoparticles were characterized by UV–Vis spectrophotometer and the characteristic surface plasmon resonance peak was identified to be 423 nm. The morphology of the silver nanoparticles was characterized by scanning electron microscopy (SEM). The size of the silver nanoparticles was found to be 10-50 nm, with an average size 15 nm.  FTIR analysis was done to identify the functional groups responsible for the synthesis of the AgNPs. The antibacterial potential of synthesized AgNPs was compared with that of aqueous extracts of P.niruri by well diffusion method. The AgNPs at 50µl concentration significantly inhibited bacterial growth against A.hydrophila (16 ± 0.09 mm). Thus AgNPs showed broad spectrum antibacterial activity at lower concentration and may be a good alternative therapeutic approach in future. Keywords: Phyllanthus niruri, AgNps, Aeromonas hydrophila, Antibacterial Activity.


Author(s):  
Md. Irfanul Hoque ◽  
Sultana Afrin Jahan Rima ◽  
Md. Salah Uddin ◽  
M. Julkarnain

Silver nanoparticles (AgNPs) have been synthesized by chemical reduction method using ascorbic acid as reducing agent. Silver nitrate (AgNO[Formula: see text] and sodium dodecyl sulfate (SDS) have been used as precursor and stabilizer, respectively. The prepared samples were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). The antibacterial activity of prepared silver nanoparticles has been assessed by using the disc diffusion method against pathogenic, gram-negative bacterial strains including Escherichia coli and Pseudomonassp. To evaluate the potential antibacterial properties of AgNPs, the discs have been impregnated and dried with three different doses like 50, 100 and 150[Formula: see text][Formula: see text]l of 20[Formula: see text][Formula: see text]g/ml concentrated AgNPs solution and placed on the Petri-dishes. The antibiotic kanamycin (5[Formula: see text][Formula: see text]g) was used as control. In all the cases, a clear and distinct zone of inhibition is observed, which suggests that AgNPs can be used as effective growth inhibitors of various bacterial species and would be promising candidate for future development of antibacterial agents.


2020 ◽  
Vol 21 (10) ◽  
pp. 980-989
Author(s):  
Sampath Shobana ◽  
Sunderam Veena ◽  
S.S.M. Sameer ◽  
K. Swarnalakshmi ◽  
L.A. Vishal

Aims: To evaluate the antibacterial activity of Artocarpus hirsutus mediated seed extract for nanoparticle synthesis. Background: Gastrointestinal bacteria are known for causing deadly infections in humans. They also possess multi-drug resistance and interfere with clinical treatments. Applied nanotechnology has been known to combat such infectious agents with little interference from their special attributes. Here we synthesize silver nanoparticles from Artocarpus hirsutus seed extract against two gastro-intestinal bacterial species: Enterobacter aerogenes and Listeria monocytogenes. Objective: To collect, dry, and process seeds of Artocarpus hirsutus for nanoparticle synthesis. To evaluate the morphological interaction of silver nanoparticles with bacteria. Methods: Artocarpus hirsutus seeds were collected and processed and further silver nanoparticles were synthesized by the co-precipitation method. The synthesized nanoparticles were characterized using XRD, UV, FTIR, and SEM. These nanoparticles were employed to study the antibacterial activity of nanoparticles against Enterobacter aerogenes and Listeria monocytogenes using well diffusion method. Further, morphological interaction of silver nanoparticles on bacteria was studied using SEM. Result: Silver nanoparticles were synthesized using Artocarpus hirsutus seed extract and characterization studies confirmed that silver nanoparticles were spherical in shape with 25-40 nm size. Antibacterial study exhibited better activity against Enterobacter aerogenes with a maximum zone of inhibition than on Listeria monocytogenes. SEM micrographs indicated that Enterobacter aerogenes bacteria were more susceptible to silver nanoparticles due to the absence of cell wall. Also, the size and charge of silver nanoparticles enable easy penetration of the bacterial cell wall. Conclusion: In this study, silver nanoparticles were synthesized using the seed extract of Artocarpus hirsutus for the first time exploiting the fact that Moraceae species have high phytonutrient content which aided in nanoparticle synthesis. This nanoparticle can be employed for large scale synthesis which when coupled with the pharmaceutical industry can be used to overcome the problems associated with conventional antibiotics to treat gastrointestinal bacteria.


2021 ◽  
Author(s):  
Filippo Fratini ◽  
Margherita Giusti ◽  
Simone Mancini ◽  
Francesca Pisseri ◽  
Basma Najar ◽  
...  

AbstractStaphylococcus aureus and coagulase-negative staphylococci are among the major causes of mastitis in sheep. The main goal of this research was to determine the in vitro antibacterial activity of several essential oils (EOs, n 30), then five of them were chosen and tested alone and in blends against staphylococci isolates. Five bacteria were isolated from episodes of ovine mastitis (two S. aureus and three S. xylosus). Biochemical and molecular methods were employed to identify the isolates and disk diffusion method was performed to determine their antimicrobial-resistance profile. The relative percentage of the main constituents in the tested essential oils and their blends was detected by GC-EIMS analysis. Antibacterial and bactericidal effectiveness of essential oils and blends were evaluated through minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). All of them showed sensitivity to the used antimicrobials. The EOs with the highest antibacterial activity were those belonging to the Lamiaceae family characterized by high concentrations of thymol, carvacrol and its precursor p-cymene, together with cinnamon EO, rich in cinnamaldehyde. In terms of both MIC and MBC values, the blend composed by Thymus capitatus EO 40%, Cinnamomum zeylanicum EO 20%, Thymus serpyllum EO 20% and Satureja montana EO 20% was found to be the most effective against all the isolates. Some essential oils appear to represent, at least in vitro, a valid tool against ovine mastitis pathogens. Some blends showed a remarkable effectiveness than the single oils, highlighting a synergistic effect in relation to the phytocomplex.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Ram Prasad ◽  
Vyshnava Satyanarayana Swamy

The unique property of the silver nanoparticles having the antimicrobial activity drags the major attention towards the present nanotechnology. The environmentally nontoxic, ecofriendly, and cost-effective method that has been developed for the synthesis of silver nanoparticles using plant extracts creates the major research interest in the field of nanobiotechnology. The synthesized silver nanoparticles have been characterized by the UV-visible spectroscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM). Further, the antibacterial activity of silver nanoparticles was evaluated by well diffusion method, and it was found that the biogenic silver nanoparticles have antibacterial activity against Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 29213), Pseudomonas aeruginosa (ATCC 27853), Azotobacter chroococcum WR 9, and Bacillus licheniformis (MTCC 9555).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Helal F. Hetta ◽  
Israa M. S. Al-Kadmy ◽  
Saba Saadoon Khazaal ◽  
Suhad Abbas ◽  
Ahmed Suhail ◽  
...  

AbstractWe aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes (afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes (bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH, afa/draBC, cnf1, csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii. AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.


Sign in / Sign up

Export Citation Format

Share Document