scholarly journals Interfacial Transcrystallization and Mechanical Performance of 3D-Printed Fully Recyclable Continuous Fiber Self-Reinforced Composites

Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3176
Author(s):  
Manyu Zhang ◽  
Xiaoyong Tian ◽  
Dichen Li

To fully exploit the preponderance of three-dimensional (3D)-printed, continuous, fiber-reinforced, thermoplastic composites (CFRTPCs) and self-reinforced composites (which exhibit excellent interfacial affinity and are fully recyclable), an approach in which continuous fiber self-reinforced composites (CFSRCs) can be fabricated by 3D printing is proposed. The influence of 3D-printing temperature on the mechanical performance of 3D-printed CFSRCs based on homogeneous, continuous, ultra-high-molecular-weight polyethylene (UHMWPE) fibers and high-density polyethylene (HDPE) filament, utilized as a reinforcing phase and matrix, respectively, was studied. Experimental results showed a qualitative relationship between the printing temperature and the mechanical properties. The ultimate tensile strength, as well as Young’s modulus, were 300.2 MPa and 8.2 GPa, respectively. Furthermore, transcrystallization that occurred in the process of 3D printing resulted in an interface between fibers and the matrix. Finally, the recyclability of 3D-printed CFSRCs has also been demonstrated in this research for potential applications of green composites.

2018 ◽  
Vol 32 (4) ◽  
pp. 501-520 ◽  
Author(s):  
Cevdet Kaynak ◽  
S Deniz Varsavas

The purpose of this study was to compare the performance of polylactide (PLA)-based materials shaped by the traditional injection molding technique versus three-dimensional (3D)-printing additive manufacturing. Comparisons were performed not only for neat PLA but also for its thermoplastic polyurethane elastomer (TPU) blend and for its E-glass fiber (GF)-reinforced composites. Performance comparison of the injection-molded and 3D-printed specimens was especially conducted to compare their mechanical properties (strength–modulus–toughness) by tensile, flexural, and fracture toughness tests. Other comparisons such as their macro-level appearances, fracture surface morphology, and thermal behavior were also performed by photographic images, scanning electron microscopy, differential scanning calorimetry, and thermogravimetric analysis. It can be concluded that the use of 3D-printing in the shaping of neat PLA and PLA/TPU blend was generally very beneficial; on the other hand, due to the differences in the orientation of the GF reinforcements, there could be certain reductions in the mechanical performance of PLA/GF and PLA/TPU/GF composite specimens.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaoming Li ◽  
Rongrong Cui ◽  
Lianwen Sun ◽  
Katerina E. Aifantis ◽  
Yubo Fan ◽  
...  

3D printing technology has recently gained substantial interest for potential applications in tissue engineering due to the ability of making a three-dimensional object of virtually any shape from a digital model. 3D-printed biopolymers, which combine the 3D printing technology and biopolymers, have shown great potential in tissue engineering applications and are receiving significant attention, which has resulted in the development of numerous research programs regarding the material systems which are available for 3D printing. This review focuses on recent advances in the development of biopolymer materials, including natural biopolymer-based materials and synthetic biopolymer-based materials prepared using 3D printing technology, and some future challenges and applications of this technology are discussed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 626 ◽  
Author(s):  
Adja B. R. Touré ◽  
Elisa Mele ◽  
Jamieson K. Christie

Three-dimensional (3D) printing has been combined with electrospinning to manufacture multi-layered polymer/glass scaffolds that possess multi-scale porosity, are mechanically robust, release bioactive compounds, degrade at a controlled rate and are biocompatible. Fibrous mats of poly (caprolactone) (PCL) and poly (glycerol sebacate) (PGS) have been directly electrospun on one side of 3D-printed grids of PCL-PGS blends containing bioactive glasses (BGs). The excellent adhesion between layers has resulted in composite scaffolds with a Young’s modulus of 240–310 MPa, higher than that of 3D-printed grids (125–280 MPa, without the electrospun layer). The scaffolds degraded in vitro by releasing PGS and BGs, reaching a weight loss of ~14% after 56 days of incubation. Although the hydrolysis of PGS resulted in the acidification of the buffer medium (to a pH of 5.3–5.4), the release of alkaline ions from the BGs balanced that out and brought the pH back to 6.0. Cytotoxicity tests performed on fibroblasts showed that the PCL-PGS-BGs constructs were biocompatible, with cell viability of above 125% at day 2. This study demonstrates the fabrication of systems with engineered properties by the synergy of diverse technologies and materials (organic and inorganic) for potential applications in tendon and ligament tissue engineering.


Gels ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 92
Author(s):  
Natalia Menshutina ◽  
Andrey Abramov ◽  
Pavel Tsygankov ◽  
Daria Lovskaya

Three-dimensional (3D) printing is a promising technology for solving a wide range of problems: regenerative medicine, tissue engineering, chemistry, etc. One of the potential applications of additive technologies is the production of highly porous structures with complex geometries, while printing is carried out using gel-like materials. However, the implementation of precise gel printing is a difficult task due to the high requirements for “ink”. In this paper, we propose the use of gel-like materials based on sodium alginate as “ink” for the implementation of the developed technology of extrusion-based 3D printing. Rheological studies were carried out for the developed alginate ink compositions. The optimal rheological properties are gel-like materials based on 2 wt% sodium alginate and 0.2 wt% calcium chloride. The 3D-printed structures with complex geometry were successfully dried using supercritical drying. The resulting aerogels have a high specific surface area (from 350 to 422 m2/g) and a high pore volume (from 3 to 3.78 cm3/g).


2018 ◽  
Vol 774 ◽  
pp. 161-166 ◽  
Author(s):  
Octavio Andrés González-Estrada ◽  
Alberto Pertuz ◽  
Jabid E. Quiroga Mendez

Three-dimensional (3D) printing technology has been traditionally used for the production of prototypes. Recently, developments in 3D printing using Fused Deposition Modelling (FDM) and reinforcement with continuous fibres (fiberglass and carbon fibre), have allowed the manufacture of functional prototypes, considerably improving the mechanical performance of the composite parts. In this work, we characterise the elastic tensile properties of fibre reinforced specimens, considering the variation of several parameters available during the printing process: fibre orientation, volume fraction, fill pattern, reinforcement distribution. Tensile tests were performed according to ASTM D638 to obtain Young’s modulus and ultimate strength for different material configurations available during the printing process. We also perform a fractographic analysis using Scanning Electron Microscopy (SEM) to give an insight of the failure mechanisms present in the specimens.


Fibers ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 74
Author(s):  
Nectarios Vidakis ◽  
Markos Petousis ◽  
Emmanouil Velidakis ◽  
Mariza Spiridaki ◽  
John D. Kechagias

In this study, nanocomposites were fabricated with polycarbonate (PC) as the matrix material. Cellulose Nanofiber (CNF) at low filler loadings (0.5 wt.% and 1.0 wt.%) was used as the filler. Samples were produced using melt mixing extrusion with the Fused Filament Fabrication (FFF) process. The optimum 3D-printing parameters were experimentally determined and the required specimens for each tested material were manufactured using FFF 3D printing. Tests conducted for mechanical performance were tensile, flexural, impact, and Dynamic Mechanical Analysis (DMA) tests, while images of the side and the fracture area of the specimens were acquired using Scanning Electron Microscopy (SEM), aiming to determine the morphology of the specimens and the fracture mechanism. It was concluded that the filler’s ratio addition of 0.5 wt.% created the optimum performance when compared to pure PC and PC CNF 1.0 wt.% nanocomposite material.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Tae-Sik Jang ◽  
Hyun-Do Jung ◽  
Houwen Matthew Pan ◽  
Win Tun Han ◽  
Shenyang Chen ◽  
...  

Three-dimensional (3D) printing of hydrogels is now an attractive area of research due to its capability to fabricate intricate, complex and highly customizable scaffold structures that can support cell adhesion and promote cell infiltration for tissue engineering. However, pure hydrogels alone lack the necessary mechanical stability and are too easily degraded to be used as printing ink. To overcome this problem, significant progress has been made in the 3D printing of hydrogel composites with improved mechanical performance and biofunctionality. Herein, we provide a brief overview of existing hydrogel composite 3D printing techniques including laser based-3D printing, nozzle based-3D printing, and inkjet printer based-3D printing systems. Based on the type of additives, we will discuss four main hydrogel composite systems in this review: polymer- or hydrogel-hydrogel composites, particle-reinforced hydrogel composites, fiber-reinforced hydrogel composites, and anisotropic filler-reinforced hydrogel composites. Additionally, several emerging potential applications of hydrogel composites in the field of tissue engineering and their accompanying challenges are discussed in parallel.


Author(s):  
Yanyan Ma ◽  
Peng Ding ◽  
Lanlan Li ◽  
Yang Liu ◽  
Ping Jin ◽  
...  

AbstractHeart diseases remain the top threat to human health, and the treatment of heart diseases changes with each passing day. Convincing evidence shows that three-dimensional (3D) printing allows for a more precise understanding of the complex anatomy associated with various heart diseases. In addition, 3D-printed models of cardiac diseases may serve as effective educational tools and for hands-on simulation of surgical interventions. We introduce examples of the clinical applications of different types of 3D printing based on specific cases and clinical application scenarios of 3D printing in treating heart diseases. We also discuss the limitations and clinically unmet needs of 3D printing in this context.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 353
Author(s):  
Yanting Han ◽  
Qianqian Wei ◽  
Pengbo Chang ◽  
Kehui Hu ◽  
Oseweuba Valentine Okoro ◽  
...  

Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


Sign in / Sign up

Export Citation Format

Share Document