scholarly journals Chitosan-Based Accelerated Portland Cement Promotes Dentinogenic/Osteogenic Differentiation and Mineralization Activity of SHED

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3358
Author(s):  
Hasan Subhi ◽  
Adam Husein ◽  
Dasmawati Mohamad ◽  
Nik Rozainah Nik Abdul Ghani ◽  
Asma-Abdullah Nurul

Calcium silicate-based cements (CSCs) are widely used in various endodontic treatments to promote wound healing and hard tissue formation. Chitosan-based accelerated Portland cement (APC-CT) is a promising and affordable material for endodontic use. This study investigated the effect of APC-CT on apoptosis, cell attachment, dentinogenic/osteogenic differentiation and mineralization activity of stem cells from human exfoliated deciduous teeth (SHED). APC-CT was prepared with various concentrations of chitosan (CT) solution (0%, 0.625%, 1.25% and 2.5% (w/v)). Cell attachment was determined by direct contact analysis using field emission scanning electron microscopy (FESEM); while the material extracts were used for the analyses of apoptosis by flow cytometry, dentinogenic/osteogenic marker expression by real-time PCR and mineralization activity by Alizarin Red and Von Kossa staining. The cells effectively attached to the surfaces of APC and APC-CT, acquiring flattened elongated and rounded-shape morphology. Treatment of SHED with APC and APC-CT extracts showed no apoptotic effect. APC-CT induced upregulation of DSPP, MEPE, DMP-1, OPN, OCN, OPG and RANKL expression levels in SHED after 14 days, whereas RUNX2, ALP and COL1A1 expression levels were downregulated. Mineralization assays showed a progressive increase in the formation of calcium deposits in cells with material containing higher CT concentration and with incubation time. In conclusion, APC-CT is nontoxic and promotes dentinogenic/osteogenic differentiation and mineralization activity of SHED, indicating its regenerative potential as a promising substitute for the commercially available CSCs to induce dentin/bone regeneration.

Author(s):  
Mariane Beatriz Sordi ◽  
Raissa Borges Curtarelli ◽  
Izabella Thaís da Silva ◽  
Gislaine Fongaro ◽  
Cesar Augusto Magalhães Benfatti ◽  
...  

AbstractIn in vitro culture systems, dexamethasone (DEX) has been applied with ascorbic acid (ASC) and β-glycerophosphate (βGLY) as culture media supplementation to induce osteogenic differentiation of mesenchymal stem cells. However, there are some inconsistencies regarding the role of DEX as osteogenic media supplementation. Therefore, this study verified the influence of DEX culture media supplementation on the osteogenic differentiation, especially the capacity to mineralize the extracellular matrix of stem cells from human exfoliated deciduous teeth (SHED). Five groups were established: G1—SHED + Dulbecco’s Modified Eagles’ Medium (DMEM) + fetal bovine serum (FBS); G2—SHED + DMEM + FBS + DEX; G3—SHED + DMEM + FBS + ASC + βGLY; G4—SHED + DMEM + FBS + ASC + βGLY + DEX; G5—MC3T3-E1 + α Minimal Essential Medium (MEM) + FBS + ASC + βGLY. DNA content, alkaline phosphatase (ALP) activity, free calcium quantification in the extracellular medium, and extracellular matrix mineralization quantification through staining with von Kossa, alizarin red, and tetracycline were performed on days 7 and 21. Osteogenic media supplemented with ASC and β-GLY demonstrated similar effects on SHED in the presence or absence of DEX for DNA content (day 21) and capacity to mineralize the extracellular matrix according to alizarin red and tetracycline quantifications (day 21). In addition, the presence of DEX in the osteogenic medium promoted less ALP activity (day 7) and extracellular matrix mineralization according to the von Kossa assay (day 21), and more free calcium quantification at extracellular medium (day 21). In summary, the presence of DEX in the osteogenic media supplementation did not interfere with SHED commitment into mineral matrix depositor cells. We suggest that DEX may be omitted from culture media supplementation for SHED osteogenic differentiation in vitro studies.


Author(s):  
Xiang Yu ◽  
Hui Ren ◽  
Qi Shang ◽  
Gengyang Shen ◽  
Kai Tang ◽  
...  

Abstract Background Concentrated growth factor (CGF) has been reported to be effective in bone formation or soft/hard tissue healing in recent years. Despite a few studies regarding the effects of CGF on the proliferation, migration, and osteogenic differentiation of BMSCs, their underlying mechanisms are not fully understood. The purpose of this study is to investigate the effects and possible mechanisms of CGF on the proliferation, migration, and osteogenic differentiation of rat-derived bone marrow mesenchymal stem cells (BMSCs) in vitro. Methods CGF was extracted from the Sprague Dawley (SD) rats by venipuncture of the abdominal aortic vein, and scanning electron microscopy (SEM) was used for the structural characterization. The release of bone morphogenetic protein 2 (BMP-2) from CGF was measured over the periods of 1 ~ 14 days, using the enzyme-linked immunosorbent (Elisa) assay. Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. Migration capacity was analyzed using the transwell assay. The osteogenic differentiation and mineralization ability were determined by Alkaline phosphatase activity (ALP) staining and Alizarin Red staining respectively. Quantitative real-time PCR (RT-qPCR), was used to evaluate the mRNA expression levels of Runx2, Ocn, Smad1, and Smad5 after culture for 14 days. Further, the protein expression of BMP-2, phosphorylated-Smad1/5 (p-Smad1/5), and Smad1/5/8 was determined by Western blot after a 14-day cell culture. Results The SEM analysis showed a porous and dense three-dimensional fibrin network in CGF. The Elisa assay showed that BMP-2 was released from CGF extract for more than 14d, and it reached a peak at the time point of 5d. The cell densities of the CGF group at the different concentrations (5%, 10%, and 20%) were significantly higher than that of the control group at the periods of day 1 to day 5 (p < 0.05). Moreover, the number of migratory cells of the CGF group was greater than that of the control group at 24 h. ALP activity analysis and Alizarin Red staining results demonstrated that CGF may successfully induce osteogenic differentiation of BMSCs. Moreover, the RT-qPCR results showed that CGF extracts dramatically enhanced the mRNA expression levels of Runx2, Ocn, Smad1, and Smad5 in BMSCs at days 14 (p < 0.05). Furthermore, Western blot results showed that CGF extracts markedly up-regulated the protein expression levels of BMP-2, p-Smad1/5, and Smad1/5/8. Conclusions CGF can promote the proliferation, migration, and promote the osteogenic differentiation potential of BMSCs in vitro. The BMP-2/Smad signaling pathway was involved in the osteogenic differentiation and mineralization of BMSCs induced by CGF. Therefore, CGF has good application potential in tissue engineering for bone regeneration and repair.


2018 ◽  
Vol 47 (2) ◽  
pp. 667-679 ◽  
Author(s):  
Shijie Zhang ◽  
Yi  Liu ◽  
Zhong Zheng ◽  
Xuemin Zeng ◽  
Dongxu Liu ◽  
...  

Background/Aims: In this study, we aimed to use bioinformatics tools to identify the specific miRNAs and mRNAs involved in osteogenic differentiation and to further explore the way in which miRNA regulates osteogenic differentiation. Methods: The microarray GSE80614, which includes data from 3 human mesenchymal stromal cells (hMSCs) and 3 hMSCs after 72 hours (hr) of osteogenic differentiation, was used to screen for differentially expressed mRNAs. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of these mRNAs were conducted using Gene Set Enrichment Analysis (GSEA). Then, the miRanda website was employed to detect the binding sites of DHRS3. In vitro experiments, including RT-PCR and western blotting, were used to detect miR-233 and DHRS3 expression levels 7 and 14 days (d) after the induction of osteogenic differentiation using human bone marrow-derived mesenchymal stem cells (hBMSCs). The target relationship between miR-223 and DHRS3 was confirmed by a dual luciferase assay. ALP (alkaline phosphatase) staining, ARS (Alizarin Red S) staining and western blotting (Runx2, OPN, OCN) were used to detect the level of osteogenic differentiation after transfection with miR-223 mimics and DHRS3 cDNA. Results: In this study, 127 mRNAs differentially expressed during osteogenic differentiation were identified in GSE80614. GO term and KEGG pathway enrichment analyses found that the retinol metabolism pathway was activated during osteogenic differentiation and that DHRS3, which is involved in the pathway, was upregulated. During osteogenic differentiation in hBMSCs, miR-223 was gradually downregulated, while DHRS3 was upregulated. After 14 days of osteogenic differentiation, ALP and ARS staining assay results showed strong ALP activity and extracellular matrix calcification with the inhibition of miR-223 or the overexpression of DHRS3. Furthermore, the expression levels of Runx2, OPN, and OCN were upregulated with the knockdown of miR-223 or the overexpression of DHRS3, while the simultaneous transfection of a miR-223 agomir and DHRS3 cDNA resulted in no significant difference from the negative control (NC) group. Conclusion: The inhibition of miR-223 promotes the osteogenic differentiation of hBMSCs via the upregulation of DHRS3.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1923-1923
Author(s):  
Fernando Ugarte ◽  
Martin F. Ryser ◽  
Sebastian Thieme ◽  
Martin Bornhaeuser ◽  
Sebastian Brenner

Abstract Notch, expressed on hematopoietic progenitors plays a crucial role in hematopoiesis. Mesenchymal stem cells (MSC) express both, Notch and its ligand Jagged and are known to support self renewal of hematopoietic progenitors via cell-cell contact and cytokine secretion. The Jagged/Notch signaling pathway has been implicated in the differentiation process of MSC, however it is not completely understood and current observations are contradictory. In order to analyze the effect of Notch signaling on human MSC differentiation we constructed lentiviral vectors that contained either the GFP-marker gene, hJagged1 IRES GFP, hNotch1 intracellular domain (NICD) IRES GFP or a gene fusion between dominant negative Mastermind1 (MAML1dn - inhibitor of Notch signaling) and the Cherry reporter gene. Primary hMSC that were obtained from bone marrow of 3 different donors were transduced with respective lentivirus vectors to greater than 98%. After exposure to adipogenic and osteogenic differentiation stimuli hMSC differentiation was quantified by Alizarin red or oil red staining, alkaline phosphatase (AP) activity and expression levels of adipogenic or osteogenic markers by Real-time PCR. Jagged1 transduced hMSC demonstrated enhanced calcium phosphate deposits and enhanced AP activity and expression levels in osteogenic differentiation medium, while adipogenic differentiation was strongly inhibited as quantified by oil red staining and low mRNA expression of genes upregulated during adipogenic differentiation (pprY, Fabp4). Similarly, overexpression of NICD induced strong and rapid osteogenic differentiation while inhibiting adipogenic differentiation and reducing cell viability. Moreover, NICD overexpression upregulates the expression of endogenous Jagged1 up to 5-fold. Inhibition of Notch signaling via overexpression of MAML1dn partially blocked the effect of hJagged1 and NICD in co-transduction experiments. In another approach MSC samples obtained from 20 donors with various osteogenic differentiation potential as measured by AP activity were analyzed for Notch1 and Jagged1 expression. While there was no correlation between AP activity and Notch1 levels we observed a significant positive correlation for AP activity and Jagged1 expression. In summary, our data strongly suggest that increased Jagged/Notch signaling enhances the osteogenic differentiation of hMSC while inhibiting their adipogenic fate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaobo Guo ◽  
Zhenyuan Wu

AbstractBone mesenchymal stem cells (BMSCs) are the most commonly investigated progenitor cells in bone defect repair and osteoarthritis subchondral bone regeneration; however, these studies are limited by complex inflammatory conditions. In this study, we investigated whether pro-autophagic γ-aminobutyric acid receptor-associated protein (GABARAP) promotes BMSCs proliferation and osteogenic differentiation by modulating autophagy in the presence or absence of interleukin-1 beta (IL-1β) in vitro. The expression levels of all relevant factors were evaluated by qRT-PCR or western blotting where appropriate. BMSCs differentiation were assessed by Alizarin Red, alkaline phosphatase, safranin O, and Oil Red O staining. Furthermore, the interactions between autophagy and osteogenic differentiation were investigated by co-treatment with the autophagy inhibitor 3-methyladenine (3-MA). As the results, we found that treatment with recombinant human His6-GABARAP protein promoted cell proliferation, inhibited apoptosis, and reduced ROS generation by increasing autophagic activity, particularly when co-cultured with IL-1β. Moreover, His6-GABARAP could effectively increase the osteogenic differentiation of BMSCs. The expression levels of inflammatory factors were significantly decreased by His6-GABARAP treatment, whereas its protective effects were attenuated by 3-MA. This study demonstrates that GABARAP maintains BMSCs survival and strengthens their osteogenic differentiation in an inflammatory environment by upregulating mediators of the autophagy pathway.


2021 ◽  
Author(s):  
Jianwei He ◽  
Weiwei Cao ◽  
Qinzheng Fang ◽  
Inayat Azeem ◽  
Wei Liu

Abstract Objectives: It had been proved that TGF-β1 was correlated with onset of osteoarthritis in vitro and vivo. Here, This study was to elucidate the epigenetic mechanism of TGF-β1 promoting osteogenic differentiation in osteoarthritis. Methods: hBMSCs surface antigens were assayed by flow cytometry tests. qRT-PCR was performed to detect hBMSCs mRNA levels of RUNX2, PPARγ and SOX9. hBMSCs were stained by osteoalkaline phosphatase and alizarin red. The qRT-PCR and Western blot were both used to detect the expression levels of methylases, demethylases and osteogenic transcription factor RUNX2 after hBMSCs were cultrued in osteogenic medium coincubated with TGF-β1 solution. Results: hBMSCs were identified by over expressions of CD90, CD105 and CD44, as well as the positive multi-diffenentiation potential tests. hBMSCs bone alkaline phosphatase and alizarin red staining were observed to deepen in TGF-β1 group compared with the osteogenic culture group. The mRNA expression levels of EZH1, KDM2B, KDM4A/4B/4C/4D, and KDM6A /6B were increased in hBMSCs cultured in osteogenic medium. The expression levels of KDM6A/6B were shown increasement when TGF-β1 was co-incubated with osteogenic medium. Furthermore, the mRNA and protein levels of KDM6A/6B were significantly decreased after SB431542 was added in the medium. RUNX2 was significantly inhibited by the addition of GSK-J4 solution, while KDM6A/6B expression level did not change significantly. Conclusion: The osteogenic differentiation of hBMSCs was related to the enhanced expressions of EZH1, KDM2B, KDM4A-4D, KDM6A/6B. The expression levels of demethylase KDM6A/6B were positively regulated by the TGF-β/Smad signaling pathway, which promoted the osteogenic differentiation of hBMSCs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Manal Nabil Hagar ◽  
Farinawati Yazid ◽  
Nur Atmaliya Luchman ◽  
Shahrul Hisham Zainal Ariffin ◽  
Rohaya Megat Abdul Wahab

Abstract Background Mesenchymal stem cells isolated from the dental pulp of primary and permanent teeth can be differentiated into different cell types including osteoblasts. This study was conducted to compare the morphology and osteogenic potential of stem cells from exfoliated deciduous teeth (SHED) and dental pulp stem cells (DPSC) in granular hydroxyapatite scaffold (gHA). Preosteoblast cells (MC3T3-E1) were used as a control group. Methodology The expression of stemness markers for DPSC and SHED was evaluated using reverse transcriptase-polymerase chain reaction (RT-PCR). Alkaline phosphatase assay was used to compare the osteoblastic differentiation of these cells (2D culture). Then, cells were seeded on the scaffold and incubated for 21 days. Morphology assessment using field emission scanning electron microscopy (FESEM) was done while osteogenic differentiation was detected using ALP assay (3D culture). Results The morphology of cells was mononucleated, fibroblast-like shaped cells with extended cytoplasmic projection. In RT-PCR study, DPSC and SHED expressed GAPDH, CD73, CD105, and CD146 while negatively expressed CD11b, CD34 and CD45. FESEM results showed that by day 21, dental stem cells have a round like morphology which is the morphology of osteoblast as compared to day 7. The osteogenic potential using ALP assay was significantly increased (p < 0.01) in SHED as compared to DPSC and MC3T3-E1 in 2D and 3D cultures. Conclusion gHA scaffold is an optimal scaffold as it induced osteogenesis in vitro. Besides, SHED had the highest osteogenic potential making them a preferred candidate for tissue engineering in comparison with DPSC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vajihe Azimian-Zavareh ◽  
Zeinab Dehghani-Ghobadi ◽  
Marzieh Ebrahimi ◽  
Kian Mirzazadeh ◽  
Irina Nazarenko ◽  
...  

AbstractWnt5A signals through various receptors that confer versatile biological functions. Here, we used Wnt5A overexpressing human ovarian SKOV-3 and OVCAR-3 stable clones for assessing integrin expression, cell proliferation, migration, invasion, and the ability of multicellular aggregates (MCAs) formation. We found here, that Wnt5A regulates differently the expression of its receptors in the stable Wnt5A overexpressing clones. The expression levels of Frizzled (FZD)-2 and -5, were increased in different clones. However ROR-1, -2 expression levels were differently regulated in clones. Wnt5A overexpressing clones showed increased cell proliferation, migration, and clonogenicity. Moreover, Wnt5A overexpressing SKOV-3 clone showed increased MCAs formation ability. Cell invasion had been increased in OVCAR-3-derived clones, while this was decreased in SKOV-3-derived clone. Importantly, αv integrin expression levels were increased in all assessed clones, accompanied by increased cell attachment to fibronectin and focal adhesion kinase activity. Moreover, the treatment of clones with Box5 as a Wnt5A/FZD5 antagonist abrogates ITGAV increase, cell proliferation, migration, and their attachment to fibronectin. Accordingly, we observed significantly higher expression levels of ITGAV and ITGB3 in human high-grade serous ovarian cancer specimens and ITGAV correlated positively with Wnt5A in metastatic serous type ovarian cancer. In summary, we hypothesize here, that Wnt5A/FZD-5 signaling modulate αv integrin expression levels that could be associated with ovarian cancer cell proliferation, migration, and fibronectin attachment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ping Zhou ◽  
Jia-Min Shi ◽  
Jing-E Song ◽  
Yu Han ◽  
Hong-Jiao Li ◽  
...  

Abstract Background Derivation of osteoblast-like cells from human pluripotent stem cells (hPSCs) is a popular topic in bone tissue engineering. Although many improvements have been achieved, the low induction efficiency because of spontaneous differentiation hampers their applications. To solve this problem, a detailed understanding of the osteogenic differentiation process of hPSCs is urgently needed. Methods Monolayer cultured human embryonic stem cells and human-induced pluripotent stem cells were differentiated in commonly applied serum-containing osteogenic medium for 35 days. In addition to traditional assays such as cell viability detection, reverse transcription-polymerase chain reaction, immunofluorescence, and alizarin red staining, we also applied studies of cell counting, cell telomerase activity, and flow cytometry as essential indicators to analyse the cell type changes in each week. Results The population of differentiated cells was quite heterogeneous throughout the 35 days of induction. Then, cell telomerase activity and cell cycle analyses have value in evaluating the cell type and tumourigenicity of the obtained cells. Finally, a dynamic map was made to integrate the analysis of these results during osteogenic differentiation of hPSCs, and the cell types at defined stages were concluded. Conclusions Our results lay the foundation to improve the in vitro osteogenic differentiation efficiency of hPSCs by supplementing with functional compounds at the desired stage, and then establishing a stepwise induction system in the future.


Author(s):  
Jingjing Cong ◽  
Bei Cheng ◽  
Jinyu Liu ◽  
Ping He

AbstractVascular calcification (VC) is highly prevailing in cardiovascular disease, diabetes mellitus, and chronic kidney disease and, when present, is associated with cardiovascular events and mortality. The osteogenic differentiation of vascular smooth muscle cells (VSMCs) is regarded as the foundation for mediating VC. Related transcriptional enhancer factor (RTEF-1), also named as transcriptional enhanced associate domain (TEAD) 4 or transcriptional enhancer factor-3 (TEF-3), is a nuclear transcriptional factor with a potent effect on cardiovascular diseases, apart from its oncogenic role in the canonical Hippo pathway. However, the role and mechanism of RTEF-1 in VC, particularly in calcification of VSMCs, are poorly understood. Our results showed that RTEF-1 was reduced in calcified VSMCs. RTEF-1 significantly ameliorated β-glycerophosphate (β-GP)-induced VSMCs calcification, as detected by alizarin red staining and calcium content assay. Also, RTEF-1 reduced alkaline phosphatase (ALP) activity and decreased expressions of osteoblast markers such as Osteocalcin and Runt-related transcription factor-2 (Runx2), but increased expression of contractile protein, including SM α-actin (α-SMA). Additionally, RTEF-1 inhibited β-GP-activated Wnt/β-catenin pathway which plays a critical role in calcification and osteogenic differentiation of VSMCs. Specifically, RTEF-1 reduced the levels of Wnt3a, p-β-catenin (Ser675), glycogen synthase kinase-3β (GSK-3β), and p-GSK-3β (Ser9), but increased the levels of p-β-catenin (Ser33/37). Also, RTEF-1 increased the ratio of p-β-catenin (Ser33/37) to β-catenin proteins and decreased the ratio of p-GSK-3β (Ser9) to GSK-3β protein. LiCl, a Wnt/β-catenin signaling activator, was observed to reverse the protective effect of RTEF-1 overexpression on VSMCs calcification induced by β-GP. Accordingly, Dickkopf-1 (Dkk1), a Wnt antagonist, attenuated the role of RTEF-1 deficiency in β-GP-induced VSMCs calcification. Taken together, we concluded that RTEF-1 ameliorated β-GP-induced calcification and osteoblastic differentiation of VSMCs by inhibiting Wnt/β-catenin signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document