scholarly journals Knock Out of Cell Death Pathway Components Results in Differential Caspase Expression in Response to HCV Infection

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 144
Author(s):  
Hannah L. Wallace ◽  
Lingyan Wang ◽  
Cassandra Davidson ◽  
Vipin Chelakkot ◽  
Michael Grant ◽  
...  

Introduction: Pyroptosis (inflammatory programmed cell death) is induced after the activation of an inflammasome, ultimately resulting in pore formation and cell lysis. One factor in the pathology associated with chronic hepatitis C virus (HCV) infection is non-inflammatory caspase-3-mediated apoptosis. Our lab has found both apoptosis and pyroptosis occurring in HCV-infected Huh-7.5 cells. In the context of some viral infections, pyroptosis is beneficial to the virus; for others, pyroptosis is believed to represent an innate antiviral response. This study aimed to test the effects of knocking out components of the inflammasome pathway on caspase activation in HCV-infected cells. Methods: FAM-FLICA (Carboxyfluorescein - Fluorochrome Inhibitor of Caspases) probes or antibodies were used to visualize active caspase-1 and active caspase-3 in vitro. Huh-7.5 cells with components of the pyroptotic or apoptotic pathways knocked out (NLRP3, GSDM-D or caspase-3) were used to determine the effects of their absence on the virus and caspase activation using confocal microscopy and flow cytometry. Results: Increased levels of caspase-1 were consistently observed in HCV-infected cells compared to those in uninfected cells, and these levels increased with subsequent days post-infection. The inhibition of inflammasome activation using knock out cell lines induced the differential activation of caspase-1 and caspase-3, with the inhibition of pyroptosis, resulting in a trend towards greater expression of caspase-3, indicative of apoptosis. The inhibition of NLRP3 did not fully stop caspase-1 activation, but it was decreased. The flow cytometry results revealed a small sub-set of cells positive for both caspase-1 and caspase-3. Conclusions: These data confirm the occurrence of pyroptosis in HCV-infected cells and demonstrate the involvement of the NLRP3 inflammasome, although other inflammasome sensors might be involved. Since the inhibition of one cell death pathway resulted in the increased activation of the other, along with the presence of double-positive cells, there may be cross-talk between apoptotic and pyroptotic pathways; the role of this cross-talk during infection remains to be elucidated.

2004 ◽  
Vol 24 (15) ◽  
pp. 6592-6607 ◽  
Author(s):  
Dhyan Chandra ◽  
Grace Choy ◽  
Xiaodi Deng ◽  
Bobby Bhatia ◽  
Peter Daniel ◽  
...  

ABSTRACT It was recently demonstrated that during apoptosis, active caspase 9 and caspase 3 rapidly accumulate in the mitochondrion-enriched membrane fraction (D. Chandra and D. G. Tang, J. Biol. Chem.278:17408-17420, 2003). We now show that active caspase 8 also becomes associated with the membranes in apoptosis caused by multiple stimuli. In MDA-MB231 breast cancer cells treated with etoposide (VP16), active caspase 8 is detected only in the membrane fraction, which contains both mitochondria and endoplasmic reticulum (ER), as revealed by fractionation studies. Immunofluorescence microscopy, however, shows that procaspase 8 and active caspase 8 predominantly colocalize with the mitochondria. Biochemical analysis demonstrates that both procaspase 8 and active caspase 8 are localized mainly on the outer mitochondrial membrane (OMM) as integral proteins. Functional analyses with dominant-negative mutants, small interfering RNAs, peptide inhibitors, and Fas-associated death domain (FADD)- and caspase 8-deficient Jurkat T cells establish that the mitochondrion-localized active caspase 8 results mainly from the FADD-dependent and tumor necrosis factor receptor-associated death domain-dependent mechanisms and that caspase 8 activation plays a causal role in VP16-induced caspase 3 activation and cell death. Finally, we present evidence that the OMM-localized active caspase 8 can activate cytosolic caspase 3 and ER-localized BAP31. Cleavage of BAP31 leads to the generation of ER- localized, proapoptotic BAP20, which may mediate mitochondrion-ER cross talk through a Ca2+-dependent mechanism.


2021 ◽  
Vol 2 (9) ◽  
pp. 745-767
Author(s):  
Maha J Hashim

Apoptosis or programmed cell death is a standard physiological mechanism. It is essential to control the number of cells, balance cell division and cell death, regulate the immune system, and eliminate pathogen-infected cells. Apoptosis entailed a different investigation to determine related biochemical reactions such as activated caspase, Reactive Oxygen Species (ROS), Lipid Peroxidation (LPO), and Evaluation of Glutathione Content (GSH) by using different techniques. HepG2 cells were exposed to +/- 0.4 and 0.8 mM t-BHP for specific times to induce toxicity for apoptosis detection. We aim to investigate the mechanism of cell death in treated HepG2 with t-BHP under consideration of the conditions of the cytoprotection assay. Results showed no strong evidence for apoptosis, although caspase-3 activity increased significantly (p ≤ 0.05) in treated HpG2 cells with 0.8 mM t-BHP at 150 minutes. The weak proof for apoptosis may attribute to the participation of Calpain through the cross-talk in blocking the caspase- activation. Similarly, we obtained significant ROS and lipid peroxidation increases in treated HepG2 cells with 0.8 mM t-BHP (p ≤ 0.05 and 0.01 respectively) at 150 minutes. Moreover, reported a (non-significant) decline in GSH amounts. Treatment of the cells with Q and I3C under the conditions used in the cytoprotection study prevented the weak activation of caspase-3 identified by western blot.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 572.2-572
Author(s):  
A. Kerstein-Staehle ◽  
N. Leinung ◽  
J. Meyer ◽  
S. Pitann ◽  
A. Müller ◽  
...  

Background:Granulomatosis with polyangiitis (GPA) is characterized by extravascular necrotizing granulomatous inflammation and systemic ANCA – associated (AAV) vasculitis with neutrophils as a key player in the pathogenesis (1). We and others have shown that neutrophil-related cell death mechanisms contribute to chronic inflammatory processes in AAV (2, 3). Recently, another form of inflammatory cell death primarily described in monocytes called pyroptosis was also discovered in neutrophils (4). A cardinal feature of pyroptosis is the activation of the NLRP3 inflammasome, a sensor of different pathogen- and damage-associated molecular patterns (PAMP, DAMP), following caspase-1-mediated processing and secretion of IL-1beta (5).Objectives:The aim of this study was to investigate, if neutrophils from GPA patients express pyroptosis-related components NLRP3, active caspase 1 and cleaved IL-1beta.Methods:Polymorphonuclear leukocytes (PMN) were isolated from peripheral blood of GPA patients and healthy controls (HC) (n = 10 each). Expression of NLRP3, inactive/active caspase 1 and active IL-1beta was determined by western blot. In addition, peripheral blood mononuclear cells (PBMC) were isolated from GPA and HC. mRNA expression ofnlrp3andil1bwas determined by qPCR. To exclude false-positive results by contamination with monocytes we performed flow cytometry analysis of whole blood samples with markers CD3, CD14, CD15, CD66b and NLRP3.Results:PMN from GPA patients showed markedly increased expression of NLRP3, active caspase 1 and active IL-1beta compared to HC. In contrast, there was no difference between GPA and HC on the mRNA level of neithernlrp3noril1bin PBMC. In addition, we confirmed by flow cytometry increased expression of NLRP3 in PMN from GPA, but not in monocytes.Conclusion:Here we provide evidence, that neutrophils from GPA undergo pyroptosis, demonstrated by increased NLRP3, active caspase 1 expression as well as IL-1beta processing. Neutrophils are present in high numbers at the site of granulomatous lesions of inflamed tissue in GPA and IL-1beta is increased in GPA sera (2). Therefore, neutrophils represent a potential source of IL-1beta in GPA. Given the fact that GPA-associated features such as massive release of necrosis-related DAMP or microbial agents such asStaphylococcus aureus(6) can activate the NLRP3-inflammasome, we identified here a potential relevant mechanism of neutrophils contributing to chronic inflammation of GPA.References:[1]Jennette, J.C., and Falk, R.J. (2014). Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease. Nat. Rev. Rheumatol.10, 463–473.[2]Millet, A., Martin, K.R., Bonnefoy, F., Saas, P., Mocek, J., Alkan, M., Terrier, B.,Kerstein,A., Tamassia, N., Satyanarayanan, S.K., et al. (2015). Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis. J. Clin. Invest. 125, 4107–4121.[3]Schreiber, A., Rousselle, A., Becker, J.U., von Mässenhausen, A., Linkermann, A., and Kettritz, R. (2017). Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc. Natl. Acad. Sci. 201708247.[4]Tourneur, L., and Witko-Sarsat, V. (2019). Inflammasome activation: Neutrophils go their own way. J. Leukoc. Biol.105, 433–436.[5]Bergsbaken, T., Fink, S.L., and Cookson, B.T. (2009). Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol.7, 99–109.[6]Lamprecht, P.,Kerstein, A., Klapa, S., Schinke, S., Karsten, C.M., Yu, X., Ehlers, M., Epplen, J.T., Holl-Ulrich, K., Wiech, T., et al. (2018). Pathogenetic and Clinical Aspects of Anti-Neutrophil Cytoplasmic Autoantibody-Associated Vasculitides. Front. Immunol.9, 1–10.Disclosure of Interests:Anja Kerstein-Staehle: None declared, Nadja Leinung: None declared, Jannik Meyer: None declared, Silke Pitann: None declared, Antje Müller: None declared, Gabriela Riemekasten Consultant of: Cell Trend GmbH, Janssen, Actelion, Boehringer Ingelheim, Speakers bureau: Actelion, Novartis, Janssen, Roche, GlaxoSmithKline, Boehringer Ingelheim, Pfizer, Peter Lamprecht: None declared


2001 ◽  
Vol 75 (6) ◽  
pp. 2535-2543 ◽  
Author(s):  
Marı́a L. Nogal ◽  
Gonzalo González de Buitrago ◽  
Clara Rodrı́guez ◽  
Beatriz Cubelos ◽  
Angel L. Carrascosa ◽  
...  

ABSTRACT African swine fever virus (ASFV) A224L is a member of the inhibitor of apoptosis protein (IAP) family. We have investigated the antiapoptotic function of the viral IAP both in stably transfected cells and in ASFV-infected cells. A224L was able to substantially inhibit caspase activity and cell death induced by treatment with tumor necrosis factor alpha and cycloheximide or staurosporine when overexpressed in Vero cells by gene transfection. We have also observed that ASFV infection induces caspase activation and apoptosis in Vero cells. Furthermore, using a deletion mutant of ASFV lacking the A224L gene, we have shown that the viral IAP modulates the proteolytic processing of the effector cell death protease caspase-3 and the apoptosis which are induced in the infected cells. Our findings indicate that A224L interacts with the proteolytic fragment of caspase-3 and inhibits the activity of this protease during ASFV infection. These observations could indicate a conserved mechanism of action for ASFV IAP and other IAP family members to suppress apoptosis.


Microbiology ◽  
2003 ◽  
Vol 149 (9) ◽  
pp. 2513-2527 ◽  
Author(s):  
Takashi Nonaka ◽  
Taku Kuwabara ◽  
Hitomi Mimuro ◽  
Asaomi Kuwae ◽  
Shinobu Imajoh-Ohmi

It is currently unclear whether Shigella kills its phagocytic host cells by apoptosis or necrosis. This study shows that rapid necrosis ensues in macrophage-like cell lines (U937 cells differentiated by all-trans-retinoic acid and J774 cells) infected with the Shigella flexneri strain YSH6000. The infected cells rapidly lose membrane integrity, a typical feature of necrosis, as indicated by the release of the cytoplasmic lactate dehydrogenase and the exposure of phosphatidylserine (PS) associated with the rapid uptake of propidium iodide (PI). The infected cells exhibit DNA fragmentation without nuclear condensation, and substantial involvement of either caspase-3/-7 or caspase-1 was not detected, which is also contrary to what is normally observed in apoptosis. Cytochalasin D potently inhibited Shigella-induced cell death, indicating that only internalized Shigella can cause necrosis. Osmoprotectants such as polyethylene glycols could suppress cell death, suggesting that insertion of a pore by Shigella into the host cell membrane induces the necrosis. The pore was estimated to be 2·87±0·4 nm in diameter. Shigella was also found to be able to induce apoptosis but only in one of the lines tested and under specific conditions, namely U937 cells differentiated with interferon-γ (U937IFN). Caspase-3/-7 but not caspase-1 activation was observed in these infected cells and the exposure of PS occurred without the uptake of PI. An avirulent Shigella strain, wild-type Shigella killed with gentamicin, and even Escherichia coli strain JM109, could also induce apoptosis in U937IFN cells, and cytochalasin D could not prevent apoptosis. It appears therefore that Shigella-induced apoptosis of U937IFN cells is unrelated to Shigella pathogenicity and does not require bacterial internalization. Thus, Shigella can induce rapid necrosis of macrophage-like cells in a virulence-related manner by forming pores in the host cell membrane while some cells can be killed through apoptosis in a virulence-independent fashion.


mBio ◽  
2011 ◽  
Vol 2 (4) ◽  
Author(s):  
Christopher L. Case ◽  
Craig R. Roy

ABSTRACTNucleotide-binding domain, leucine-rich repeat containing proteins (NLRs) activate caspase-1 in response to a variety of bacterium-derived signals in macrophages. NLR-mediated activation of caspase-1 byLegionella pneumophilaoccurs through both an NLRC4/NAIP5-dependent pathway and a pathway requiring the adapter protein Asc. Both pathways are needed for maximal activation of caspase-1 and for the release of the cytokines interleukin-1β (IL-1β) and IL-18. Asc is not required for caspase-1-dependent pore formation and cell death induced upon infection of macrophages byL. pneumophila. Here, temporal and spatial localization of caspase-1-dependent processes was examined to better define the roles of Asc and NLRC4 during infection. Imaging studies revealed that caspase-1 localized to a single punctate structure in infected cells containing Asc but not in cells lacking this adapter. Both endogenous Asc and ectopically produced NLRC4 tagged with green fluorescent protein (GFP) were found to localize to caspase-1 puncta followingL. pneumophilainfection, suggesting that NLRC4 and Asc coordinate signaling through this complex during caspase-1 activation. Formation of caspase-1-containing puncta correlated with caspase-1 processing, suggesting a role for the Asc/NLRC4/caspase-1 complex in caspase-1 cleavage. In cells deficient for Asc, NLRC4 did not assemble into discrete puncta, and pyroptosis occurred at an accelerated rate. These data indicate that Asc mediates integration of NLR components into caspase-1 processing platforms and that recruitment of NLR components into an Asc complex can dampen pyroptotic responses. Thus, a negative feedback role of complexes containing Asc may be important for regulating caspase-1-mediated responses during microbial infection.IMPORTANCECaspase-1 is a protease activated during infection that is central to the regulation of several innate immune pathways. Studies examining the macromolecular complexes containing this protein, known as inflammasomes, have provided insight into the regulation of this protease. This work demonstrates that the intracellular bacteriumLegionella pneumophilainduces formation of complexes containing caspase-1 by multiple mechanisms and illustrates that an adapter molecule called Asc integrates signals from multiple independent upstream caspase-1 activators in order to assemble a spatially distinct complex in the macrophage. There were caspase-1-associated activities such as cytokine processing and secretion that were controlled by Asc. Importantly, this work uncovered a new role for Asc in dampening a caspase-1-dependent cell death pathway called pyroptosis. These findings suggest that Asc plays a central role in controlling a distinct subset of caspase-1-dependent activities by both assembling complexes that are important for cytokine processing and suppressing processes that mediate pyroptosis.


2001 ◽  
Vol 280 (1) ◽  
pp. L10-L17 ◽  
Author(s):  
Han-Ming Shen ◽  
Zhuo Zhang ◽  
Qi-Feng Zhang ◽  
Choon-Nam Ong

Alveolar macrophages (AMs) are the principal target cells of silica and occupy a key position in the pathogenesis of silica-related diseases. Silica has been found to induce apoptosis in AMs, whereas its underlying mechanisms involving the initiation and execution of apoptosis are largely unknown. The main objective of the present study was to examine the form of cell death caused by silica and the mechanisms involved. Silica-induced apoptosis in AMs was evaluated by terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling assay and cell cycle/DNA content analysis. The elevated level of reactive oxygen species (ROS), caspase-9 and caspase-3 activation, and poly(ADP-ribose) polymerase (PARP) cleavage in silica-treated AMs were also determined. The results showed that there was a temporal pattern of apoptotic events in silica-treated AMs, starting with ROS formation and followed by caspase-9 and caspase-3 activation, PARP cleavage, and DNA fragmentation. Silica-induced apoptosis was significantly attenuated by a caspase-3 inhibitor, N-acetyl-Asp-Glu-Val-Asp aldehyde, and ebselen, a potent antioxidant. These findings suggest that apoptosis is an important form of cell death caused by silica exposure in which the elevated ROS level that results from silica exposure may act as an initiator, leading to caspase activation and PARP cleavage to execute the apoptotic process.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiao Lin ◽  
Haotuo Ye ◽  
Felix Siaw-Debrah ◽  
Sishi Pan ◽  
Zibin He ◽  
...  

Intracerebral hemorrhage (ICH) refers to bleeding in the brain and is associated with the release of large amount of inflammasomes, and the activation of different cell death pathways. These cell death pathways lead to removal of inactivated and damaged cells and also result in neuronal cell damage. Pyroptosis is a newly discovered cell death pathway that has gained attention in recent years. This pathway mainly depends on activation of caspase-1-mediated cascades to cause cell death. We tested a well-known selective inhibitor of caspase-1, AC-YVAD-CMK, which has previously been found to have neuroprotective effects in ICH mice model, to ascertain its effects on the activation of inflammasomes mediated pyroptosis. Our results showed that AC-YVAD-CMK could reduce caspase-1 activation and inhibit IL-1β production and maturation, but has no effect on NLRP3 expression, an upstream inflammatory complex. AC-YVAD-CMK administration also resulted in reduction in M1-type microglia polarization around the hematoma, while increasing the number of M2-type cells. Furthermore, AC-YVAD-CMK treated mice showed some recovery of neurological function after hemorrhage especially at the hyperacute and subacute stage resulting in some degree of limb movement. In conclusion, we are of the view that AC-YVAD-CMK could inhibit pyroptosis, decrease the secretion or activation of inflammatory factors, and affect the polarization of microglia resulting in improvement of neurological function after ICH.


Author(s):  
Sinem Yilmaz ◽  
Fatih Tok ◽  
Esra A. Sahar ◽  
Bedia K. Kaymakcioglu ◽  
Petek B. Kirmizibayrak

Background: The complexity of cancer biology and the development of chemotherapy resistance are two main obstacles to cancer treatment and necessitate novel anticancer molecules that target different cell death pathways. Modulation of endoplasmic reticulum (ER) stress and subsequent activation of the unfolded protein response (UPR) has been proposed as potential chemotherapeutic target, as prolonged ER stress can lead to cell death via apoptosis or necrosis. Objective: The present study aims to evaluate the molecular mechanism underlying the cytotoxic activity of selected urea and carbohydrazide derivatives. Methods: Cell proliferation assays were performed on HeLa, Capan1, MCF7, HCC1937, and MRC5 cell lines by WST-1 assay. The expression levels of selected ER stress, autophagy, and apoptosis marker proteins were compared by immunoblotting to characterize the underlying mechanism of cytotoxicity. Flow cytometry was used to detect apoptosis. Results: Of the tested cytotoxic compounds, 3a, 4a, 5a, 6a, and 1b dramatically and 5b moderately increased ER stress-related CHOP protein levels. Interestingly, 5b but not 3a, 4a, 5a, 6a, or 1b increased the expression of pro-apoptotic proteins such as cleaved PARP-1 and cleaved caspase-3 and -7. Flow-cytometry analysis further confirmed that the cytotoxic activity of 5b but not the other compounds is mediated by apoptosis, which is also demonstrated by a significant increase in the percentage of late apoptotic cells (7-AAD/annexin V double-positive cells). Conclusion: Our results suggest that changing a substituent from trifluoromethyl to nitro in urea and carbohydrazide core structure alters the cell death mechanism from apoptosis to an apoptosis-independent cell death pathway. This study shows an example of how such simple modifications of a core chemical structure could cause the induction of divergent cell death pathways.


Sign in / Sign up

Export Citation Format

Share Document