scholarly journals Novel Test Fixture for Characterizing MEMS Switch Microcontact Reliability and Performance

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 579 ◽  
Author(s):  
Protap Mahanta ◽  
Farhana Anwar ◽  
Ronald Coutu

In microelectromechanical systems (MEMS) switches, the microcontact is crucial in determining reliability and performance. In the past, actual MEMS devices and atomic force microscopes (AFM)/scanning probe microscopes (SPM)/nanoindentation-based test fixtures have been used to collect relevant microcontact data. In this work, we designed a unique microcontact support structure for improved post-mortem analysis. The effects of contact closure timing on various switching conditions (e.g., cold-switching and hot-switching) was investigated with respect to the test signal. Mechanical contact closing time was found to be approximately 1 us for the contact force ranging from 10–900 μN. On the other hand, for the 1 V and 10 mA circuit condition, electrical contact closing time was about 0.2 ms. The test fixture will be used to characterize contact resistance and force performance and reliability associated with wide range of contact materials and geometries that will facilitate reliable, robust microswitch designs for future direct current (DC) and radio frequency (RF) applications.

Author(s):  
S Girish Gandhi, I Govardhani, M Venkata Narayana, K Sarat Kumar

This is an attempt to compare three different shunt configured RF MEMS switches which offers a choice for applications in satellite and antennas. Advanced RF communication domain demands for design and modeling of RF MEMS switch which provides extremely reduced pull-in voltage, better isolation, low insertion loss, and with greater reliability. The proposed work manages with comparison of design modeling and performance of three different shunt configured RF MEMS switches. The proposed shunt configured RF MEMS switches are designed with different dimensions with different meandering techniques with perforations on beam structure helps in reducing the amount of voltage required for actuation of switch which is known as pull-in voltage. Comparative study of three different RF MEMS switches which involves in conducting electromechanical analysis are carried out using COMSOL multi physics tool and electromagnetic analysis are carried out using HFSS tool. Moreover the comparative study involves in comparing the values of pull-in voltage, switching time and capacitance, stress, insertion loss, return loss and isolation of three different RF MEMS switches. Proposed first switch model derives pull-in voltage of 16.9v with the switching time of 1.2µs, isolation of 47.70 dB at 5GHz and insertion loss of 0.0865 dB and return loss of 41.55 dB. Proposed second switch model derives pull-in voltage of 18.5v with the switching time of 2.5µs, isolation of 37.20 dB at 8GHz and insertion loss of 0.1177 dB and return loss of 38.60 dB. Proposed third switch model delivers pull-in voltage of 18.75v with the switching time of 2.56µs, isolation of 44.1552 dB at 8GHz and insertion loss of 0.0985 dB and return loss of 42.1004 dB.


Author(s):  
Ryszard J. Pryputniewicz

Today, an ideal microelectromechanical systems (MEMS) switch is no longer a designer’s dream, yet electrothermomechanical (ETM) effects still limit the design possibilities and may adversely affect reliability of microswitches, especially the Ohmic-type cantilever contact switches. The ETM effects are a result of Joule heat generated at the switch contact areas (i.e., electrical interfaces). This heat is due to an electrical signal passing through a microswitch, internal resistance of contact materials, and characteristics of the electrical contact interface. It significantly raises temperature of a microswitch, thus adversely affecting mechanical and electrical properties of the contacts, leading to their wear or even welding, which is a major reliability issue. Fundamental research is being performed to minimize Joule heat effects in the electrical interface area, thus improving the microswitch performance and reliability. Thermal analysis conducted computationally on an Ohmic-type RF MEMS switch indicate heat affected zones (HAZ) and the influence that various parameters have on those zones. Such analysis facilitates mitigation of thermal management issues that may otherwise be detrimental to functional operation of a microswitch.


2012 ◽  
Vol 1427 ◽  
Author(s):  
Fumihiko Nakazawa ◽  
Xiaoyu Mi ◽  
Takeaki Shimanouchi ◽  
Tadashi Nakatani ◽  
Takashi Katsuki ◽  
...  

ABSTRACTThis paper presents novel 3D heterogeneous integrations using MEMS Devices for RF applications. We propose a 3D heterogeneous integration method that combines the advantages of LTCC, passive integration, and MEMS technologies. The basic concept is to form a large-size LTCC wiring wafer and then to form high-Q passives or MEMS filters directly on the wafer surface. Other functional devices such as ICs, SAWs, and MEMS switches are mounted above the surface-formed devices. A miniaturized duplexer consisted of IPD, SAW, and film bulk acoustic resonator (FBAR); and a next generation duplexer module consisted of an MEMS tunable filter and a piezoelectric transducer (PZT)-actuated RF MEMS switch were constructed to demonstrate its feasibility and effectiveness.


2019 ◽  
Vol 9 (15) ◽  
pp. 3165
Author(s):  
Anthony J. Ferrer ◽  
Anna Halajko ◽  
Glenn G. Amatucci

Microelectromechanical systems (MEMS) are pervasive in modern technology due to their reliability, small foot print, and versatility of function. While many of the manufacturing techniques for MEMS devices stem from integrated circuit (IC) manufacturing, the wide range of designs necessitates more varied processing techniques. Here, new details of a scanning laser based direct-write dewetting technique are presented as an expansion of previous demonstrations. For the first time, the ability to pattern a high melting temperature and high reflectance metallic thin films of Ni and Ag, respectively, on polymer substrates is reported. Novel methods for reducing the power necessary for processing highly reflective films are demonstrated by depositing very thin films of high near-infrared absorbance.


2010 ◽  
Vol 1249 ◽  
Author(s):  
Hyung Suk Yang ◽  
Muhannad Bakir

AbstractMicroelectromechanical Systems (MEMS) market is a rapidly growing market with a wide range of devices. Most of these devices require an interaction with an electronic circuit, and with the increasing number of high performance MEMS devices that are being introduced, a demand for integrating CMOS and MEMS using high-density and low-parasitic interconnects have also been on the rise.Unfortunately, conventional methods of integrating CMOS with MEMS cannot provide the high density and low-parasitic interconnections required by modern high performance MEMS devices, and at the same time provide the flexibility required to accommodate new devices that are made using new materials and highly innovative fabrication processes.Heterogeneous 3D integration of MEMS and CMOS has the potential to provide both the performance and the integration flexibility; however there are two interconnect challenges that need to be addressed. This paper outlines the details of these interconnect challenges and introduces two interconnect technologies, Mechanically Flexible Interconnects (MFI) and Through-Silicon Via (TSV), developed specifically to address these challenges.


Author(s):  
John Heck ◽  
Hanan Bar ◽  
Tsung-Kuan A. Chou ◽  
Quan Tran ◽  
Qing Ma ◽  
...  

This paper describes a unique method of encapsulating MEMS switches at the wafer level using a thin-film “microshell” lid and a novel micro-embossing, or “stamping” technique to seal the lid. After fabrication of the MEMS switch and subsequent formation of the microshell, the switches are released through gold tunnels that allow the penetration of a chemical etchant. In a controlled ambient, a “stamp” wafer is aligned to the device wafer, and the wafers are thermally compressed together. This process applies pressure across each tunnel to fuse the gold, thereby sealing the microshell packages. By sealing and passivating the switches at the wafer level, the wafers can be exposed to backend processing, packaging, and assembly steps such as dicing without damaging the sensitive MEMS devices. Furthermore, the size, cost, and complexity of the packaged system are significantly reduced compared to standard wafer bonding processes.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012069
Author(s):  
I V Uvarov ◽  
N V Marukhin

Abstract Outstanding working characteristics make microelectromechanical systems (MEMS) switches attractive for many applications. However, the lack of reliability prevents their commercial success. Due to the small size, MEMS switches develop low contact force compared to their macroscopic counterparts, which leads to instability and fast increase of the contact resistance. This work describes the switch providing significantly larger force than the previously reported device. The enlargement is achieved by the modified shape of the beam and electrodes with the same footprint and lower actuation voltage. Design, simulation, fabrication and first experimental results for the switch are presented.


2020 ◽  
Author(s):  
Lakshmi Swaminathan

RF (Radio Frequency) MEMS (Micro Electro Mechanical Systems) technology is the application of micromachined mechanical structures, controlled by electrical signals and interacting with signals in the RF range. The applications of these devices range from switching networks for satellite communication systems to high performance resonators and tuners. RF MEMS switches are the first and foremost MEMS devices designed for RF technology. A specialized method for fabricating microsturctures called surface micromachining process is used for fabricating the RF MEMS switches. Die level packaging using available surface mount style RF packages. The packaging process involved the design of RF feed throughs on the Alumina substrates to the die attachment, wire bonding and hermetic sealing using low temperature processes.


2001 ◽  
Author(s):  
Chunjun Wang ◽  
Ramesh Ramadoss ◽  
Simone Lee ◽  
K. C. Gupta ◽  
Victor M. Bright ◽  
...  

Abstract This paper describes a new microelectromechanical systems (MEMS) switch fabricated using flexible circuit technologies. Hundreds of such switches can be laminated onto a large-area printed circuit board (PCB) with other RF devices and circuits. The switches are fabricated using low-cost, low-loss flexible circuit material Kapton-E polyimide film. Switches with actuation voltages as low as 73 V are reported.


Micromachines ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 351 ◽  
Author(s):  
Meng ◽  
Cheng ◽  
Yang ◽  
Sun ◽  
Luo

The through-silicon-vias (TSVs) process is a vital technology in microelectromechanical systems (MEMS) packaging. The current via filling technique based on copper electroplating has many shortcomings, such as involving multi-step processes, requiring sophisticated equipment, low through-put and probably damaging the MEMS devices susceptible to mechanical polishing. Herein, a room temperature treatable, high-efficient and low-cost seedless TSV process was developed with a one-step filling process by using novel electrically conductive adhesives (ECAs) filled with silver nanowires. The as-prepared ECAs could be fully cured at room temperature and exhibited excellent conductivity due to combining the benefits of both polymethyl methacrylate (PMMA) and silver nanowires. Complete filling of TSVs with the as-prepared 30 wt% silver nanowires ECAs was realized, and the resistivity of a fully filled TSV was as low as 10−3 Ω·cm. Furthermore, the application of such novel TSV filling process could also be extended to a wide range of different substrates, showing great potential in MEMS packaging, flexible microsystems and many other applications.


Sign in / Sign up

Export Citation Format

Share Document