scholarly journals Characteristics Research of a High Sensitivity Piezoelectric MOSFET Acceleration Sensor

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4988
Author(s):  
Chunpeng Ai ◽  
Xiaofeng Zhao ◽  
Dianzhong Wen

In order to improve the output sensitivity of the piezoelectric acceleration sensor, this paper proposed a high sensitivity acceleration sensor based on a piezoelectric metal oxide semiconductor field effect transistor (MOSFET). It is constituted by a piezoelectric beam and an N-channel depletion MOSFET. A silicon cantilever beam with Pt/ZnO/Pt/Ti multilayer structure is used as a piezoelectric beam. Based on the piezoelectric effect, the piezoelectric beam generates charges when it is subjected to acceleration. Due to the large input impedance of the MOSFET, the charge generated by the piezoelectric beam can be used as a gate control signal to achieve the purpose of converting the output charge of the piezoelectric beam into current. The test results show that when the external excitation acceleration increases from 0.2 g to 1.5 g with an increment of 0.1 g, the peak-to-peak value of the output voltage of the proposed sensors increases from 0.327 V to 2.774 V at a frequency of 1075 Hz. The voltage sensitivity of the piezoelectric beam is 0.85 V/g and that of the proposed acceleration sensor was 2.05 V/g, which is 2.41 times higher than the piezoelectric beam. The proposed sensor can effectively improve the voltage output sensitivity and can be used in the field of structural health monitoring.

2012 ◽  
Vol 588-589 ◽  
pp. 614-617
Author(s):  
Zhi Hua Wang ◽  
Mei Ling Li ◽  
Jian Zhang ◽  
Li Wang ◽  
Yong Xu

The Equivalent Turn Number of Coil (ETNC) is proposed for induction coil design. Simulation results show that the vibrationonthe induction coil’s structure. The optimized coil is composed by two symmetry parts on the condition of sinusoidal vibration. The effective value of output EMF of optimized coil increases 51.39% than uniform coil’s. In the experiment, the optimized and uniform coils are fabricated with 600 turns and comparatively studied in the same vibration-to-electrical generator. The test results show that the peak-to-peak value and effective value of output EMF of the optimized coil can increase up to 52.59% and 48.76%, respectively, compared with the uniform coil.


2002 ◽  
Vol 743 ◽  
Author(s):  
Z. Y. Fan ◽  
J. Li ◽  
J. Y. Lin ◽  
H. X. Jiang ◽  
Y. Liu ◽  
...  

ABSTRACTThe fabrication and characterization of AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOSHFETs) with the δ-doped barrier are reported. The incorporation of the SiO2 insulated-gate and the δ-doped barrier into HFET structures reduces the gate leakage and improves the 2D channel carrier mobility. The device has a high drain-current-driving and gate-control capabilities as well as a very high gate-drain breakdown voltage of 200 V, a cutoff frequency of 15 GHz and a maximum frequency of oscillation of 34 GHz for a gate length of 1 μm. These characteristics indicate a great potential of this structure for high-power-microwave applications.


1999 ◽  
Author(s):  
Mitsuteru Kimura ◽  
Katsuhisa Toshima ◽  
Harunobu Satoh

Abstract A new type all optical vibration and acceleration sensor using the combination of micromachined Si cantilever and optical fiber is proposed, and its fundamental characteristics are demonstrated. The light emitted from bulb-lens set into the V-groove is reflected at the reflector formed on the Si cantilever and then recoupled into the bulb-lens. Several sensors with different length (0.64–6.0 mm long) of the Si cantilever are fabricated to compare the theoretical resonance frequency fr obtained from the simple model and experimental ones. They had good agreement. From the sensing principle the sensing frequency range of the vibration is suitable below the fr of the Si cantilever of the sensor.


2018 ◽  
Vol 90 (5) ◽  
pp. 562-569 ◽  
Author(s):  
Matthias Pawlowski ◽  
Viktoria Joksch ◽  
Heinz Wiendl ◽  
Sven G Meuth ◽  
Thomas Duning ◽  
...  

ObjectivesFrontotemporal dementia (FTD) is a heterogeneous clinical syndrome linked to diverse types of underlying neuropathology. Diagnosis is mainly based on clinical presentation and accurate prediction of underlying neuropathology remains difficult.MethodsWe present a large cohort of patients with FTD spectrum diseases (n=84). All patients were thoroughly characterised by cerebrospinal fluid (CSF) Alzheimer’s disease (AD) biomarkers, neuroimaging, neuropsychological testing and standardised apraxia screening.ResultsA potential AD pathology was found in 43% of patients with FTD. CSF AD biomarker levels positively correlated with AD-typical apraxia scores in patients with FTD. The discriminative power of apraxia test results indicative of AD pathology was high (sensitivity: 90%, specificity: 66%).ConclusionsApraxia is common in neurodegenerative dementias but under-represented in clinical workup and diagnostic criteria. Standardised apraxia screening may serve as bedside test to objectify an AD-typical apraxia profile as an early and robust sign of AD pathology in patients with FTD.


2014 ◽  
Vol 71 (5) ◽  
Author(s):  
Muhammad Arif Khan ◽  
Samsudi Sakrani ◽  
Syahida Suhaima ◽  
Yussof Wahab ◽  
Rosnita Muhammad

One dimensional metal oxide semiconductor nanowires of copper (I) oxide (Cu2O), zinc oxide (ZnO), and their heterojunction nanowires possess remarkable physical and chemical properties. ZnO and Cu2O areattractive because the metals are abundant on earth, inexpensive, nontoxic.Moreover, these oxides have useful optical and electrical properties suitable for a wide variety of electrical devices, because their electrical conduction can be predictably controlled by doping. We here restrict the disscussion using a Hot Tube Vacuum Thermal Evaporation. The NWs in these devices will be studied by physical vapor deposition known as vapor-liquid-solid (VLS). Therefore, we explore conventional methods, particularly the VLS of growing ZnO and Cu2O nanowires which are assisted by the catalyst.  In this short review, we report the individual and combined (Cu2O/ZnO) junction nanowires by PVD method.  The main advantages of these composite nanowires are the natural p-n characteristics, the broad light absorption, the high sensitivity to humidity changes, and the fast dynamic response. The combination of all characteristics offered by Cu2O/ZnO nanowires can enable the fabrication of diverse sensing devices, and photovoltaic solar cells.


2013 ◽  
Vol 765-767 ◽  
pp. 3158-3161
Author(s):  
Jun Liu ◽  
Zheng Li Zhang

Tests of bird strike have been carried out on plate made from LY-12 Aluminium. The test was down with the projectile impacting the target perpendicularly at velocity of 40m/s, 80m/s, 120m/s respectively. The displacement-time history curves and strain-time history curves of on LY-12 Aluminium plate were measured. The good agreement of the results between two specimens in one group indicated that the results tested in the presnet paper are reliable. The dynamic response of the plate and damage modes of the bird influenced by striking velocity were analyzed. The peak value of the displacement linear enlarged with the increasing of the striking velocity. The test results in the present paper provided valuable data for aircraft design impacted by bird, and also provided abundant test datas for the numerical simulation model applied in bird striking.


2011 ◽  
Vol 94-96 ◽  
pp. 1146-1151 ◽  
Author(s):  
Guan Rong ◽  
Xiao Jiang Wang

Permeability test for complete stress-strain process of coarse sandstone were carried out in triaxial test instrument. On the basis of test results, the influence of confining pressure and strain on the hydraulic conductivity was discussed. It is shown that in the complete stress-strain process, hydraulic conductivity changes in the law that presents the same character with the curve of stress-strain. The hydraulic conductivity reduces slightly with the increase of deviatoric stress in the stage of micro fracture compressing and elastic; In the elastoplastic stage, along with the expansion of new fractures, the hydraulic conductivity increases slowly at first and then reaches sharply to the maximum value after peak point; In the post-peak stage, the fracture which controls the hydraulic conductivity of coarse sandstone is compressed because of the confining pressure and the hydraulic conductivity decreases. During the process of deformation and failure, the hydraulic conductivity is more sensitive to the change of circumferential strain. With the increase of confining pressure, the increased value from initial to peak value and the decreased value from peak to residual value decreases.


2021 ◽  
Author(s):  
Jihyun Lee ◽  
Youngmoon Choi ◽  
Byoung Joon Park ◽  
Jeong Woo Han ◽  
Hyun-Sook Lee ◽  
...  

Abstract ZnO has been studied intensely for chemical sensors due to its high sensitivity and fast response. Here, we present a simple approach to precisely control oxygen vacancy contents to provide significantly enhanced acetone sensing performance of commercial ZnO nanopowders. A combination of H2O2 treatment and thermal annealing produces optimal surface defects with oxygen vacancies on the ZnO nanoparticles (NPs). The highest response of ~27,562 was achieved for 10 ppm acetone in 0.125 M H2O2 treated/annealed ZnO NPs at the optimal working temperature of 400 ℃, which is significantly higher than that of reported so far in various acetone sensors based on metal-oxide-semiconductor (MOS). Furthermore, first-principles calculations indicate that pre-adsorbed O formed on the surface of H2O2-treated ZnO NPs can provide a favorable adsorption energy, especially for acetone detection, due to strong bidentate bonding between carbonyl C atom of acetone molecules and pre-adsorbed O on the ZnO surface. Our study demonstrates that controlling surface oxygen vacancies by H2O2 treatment and re-annealing at optimal temperature is an effective method to improve the sensing properties of commercial MOS materials.


2020 ◽  
Vol 10 (24) ◽  
pp. 8804
Author(s):  
Jhonni Rahman ◽  
Yutaka Shoukaku ◽  
Tomoaki Iwai

This study examines the relationship between rubber-wheel and the contact area on the road surface. Ultraviolet-induced fluorescence microscopy was used to observe and measure the contact parts with pyranine as a dye solution. The high sensitivity to U.V. light makes it easy to distinguish contact and non-contact regions on a very small scale. The experiment was conducted in static and dynamic conditions to identify its influence on the apparent contact area of rubber-wheel and road surface. The in-situ observation of the contact area was captured and recorded using a high-speed digital camera with 1-inch a CMOS (complementary metal oxide semiconductor) sensor. Additionally, the contact area between rubber-wheel and road surface was measured using an analyzing software. The results show differences in static and dynamic contact conditions based on the operating parameters.


Sign in / Sign up

Export Citation Format

Share Document