scholarly journals Dynamic Transmit Profile Selection in Dense Wireless Networks

Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 134
Author(s):  
Łukasz Kułacz ◽  
Adrian Kliks ◽  
Paweł Kryszkiewicz ◽  
Bartosz Bossy

The development of wireless networks can be characterized by both the increased number of deployed network nodes as well as their greater heterogeneity. As a consequence, the distance between the neighboring nodes decreases significantly, the density of such a wireless network is very high, and it brings to the mind the analogy to the human brain and nervous system, where a highly simplified scheme of information delivery is applied. Motivated by this similarity, in this paper, we study the possibility of the application of various transmission profiles in order to optimize the overall energy consumption in such dense wireless networks. The transmission profile specifies the radio access and energy consumption of the wireless transceiver (network node), and is characterized by the tuple of parameters, e.g., the total transmit power or minimal required signal-to-noise ratio (SNR). In the considered multi-hop network, we assume that each node can be set to the most promising transmission profile to achieve some predefined goals, such as (sensor) network reliability or transmission energy efficiency. We have proposed the new graph-based routing algorithm in such a dense wireless network, where total power consumption of message delivery is minimized by multihop and multimode transmission. The theoretical definition of the prospective transmission schemes is supported by the analysis of the results of the simulation experiments.

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4468 ◽  
Author(s):  
Premaratne Samaranayake ◽  
Weiguang Liang ◽  
Zhong-Hua Chen ◽  
David Tissue ◽  
Yi-Chen Lan

Sustainable food production in protected cropping is increasing rapidly in response to global climate change and population growth. However, there are significant knowledge gaps regarding energy consumption while achieving optimum environmental conditions for greenhouse crop production. A capsicum crop cultivated in a high-tech greenhouse facility in Australia was analysed in terms of relationships between key environmental variables and the comparative analysis of energy consumption during different seasons. We showed that daily energy consumption varied due to the seasonal nature of the external environment and maintenance of optimal growing temperatures. Total power consumption reported throughout the entire crop cycle for heating (gas hot water system) and cooling (pad and fan) was 12,503 and 5183 kWh, respectively; hence, heating consumed ca. 70% of the total energy requirement over the 8-month growing period (early spring to late autumn) in the greenhouse facility. Regressions of daily energy consumption within each season, designated either predominantly for heating or cooling, indicated that energy consumption was 14.62 kWh per 1 °C heating and 2.23 kWh per 1 °C cooling. Therefore, changing the planting date to late spring is likely to significantly reduce heating energy costs for greenhouse capsicum growers in Australia. The findings will provide useful guidelines to maximise the greenhouse production of capsicum with better economic return by taking into consideration the potential optimal energy saving strategy during different external environment conditions and seasons.


Author(s):  
Asrani Lit ◽  
M. S. Rusli ◽  
M. N. Marsono

Wireless Network-on-Chip or WiNoC is an alternative to traditional planar on-chip networks. On-chip wireless links are utilized to reduce latency between distant nodes due to its capability to communicate with far-away node within a single hop. This paper analyzes the impact of various routing schemes and the effect of WiNoC sizes on network traffic distributions compared to conventional mesh NoC. Radio hubs (4×4) are evenly placed on WiNoC to analyze global average delay, throughput, energy consumption and wireless utilization. For validation, three various network sizes (8×8,   16×16 and 32×32) of mesh NoC and WiNoC architectures are simulated on cycle-accurate Noxim simulator under numerous traffic load distributions. Simulation results show that WiNoC architecture with the 16×16 network size has better average speedup (∼1.2×) and improved network throughputs by 6.36% in non-uniform transpose traffic distribution. As the trade-off, WiNoC requires 63% higher energy consumption compared to the classical wired NoC mesh.


Author(s):  
Tran Hoang Vu ◽  
Vu Cong Luc

In  this  paper,  we  present  a  design  and  an evaluation  of  two  power  management  modes  that reduce the  energy  consumption  of OpenFlow switches. First,  we  define  two  new  low  power  modes:  SLEEP PORT  and  SLEEP  SWITCH,  which  reduce   energy consumption   in  cases  where  packets  on  port  or switches  are  absent.  Second,  we  present  a  Wake  on LAN  (WOL)  method  for  OpenFlow  Switches  to  wake up  Ethernet  ports  or  the  whole  switch  from  inactive states.  Finally,  we  describe  our  design,  experimental results and  performance evaluations. Our results show that the control SLEEP PORT mode on a switch might save  about 9.8% power consumption per  port,  and  up to about 60% of total power consumption of the switch with SLEEP  SWITCH mode.  In  addition,  we  will implement  this  method  to  Openflow  Switch  bases  on NetFPGA- 10 Gigabit in the future.


2021 ◽  
Vol 267 ◽  
pp. 01006
Author(s):  
Guohua He ◽  
Xiaoling Li ◽  
Shan Jiang ◽  
Yongnan Zhu ◽  
Fan He ◽  
...  

This paper takes each province and region as the research object and 2017 as the research period, and the energy consumption of China’s social water cycle process was analyzed. The results showed that the total power consumption of China’s social water cycle process was 1082.81 billion kWh, accounting for 17.2% of the total power consumption of China’s society in 2017. Terminal water consumption is the biggest energy consumption. Based on the calculated results, this study puts forward relevant suggestions for realizing energy-water coordinated security.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4455 ◽  
Author(s):  
Vicente Mayor ◽  
Rafael Estepa ◽  
Antonio Estepa ◽  
Germán Madinabeitia

This paper formulates a new problem for the optimal placement of Unmanned Aerial Vehicles (UAVs) geared towards wireless coverage provision for Voice over WiFi (VoWiFi) service to a set of ground users confined in an open area. Our objective function is constrained by coverage and by VoIP speech quality and minimizes the ratio between the number of UAVs deployed and energy efficiency in UAVs, hence providing the layout that requires fewer UAVs per hour of service. Solutions provide the number and position of UAVs to be deployed, and are found using well-known heuristic search methods such as genetic algorithms (used for the initial deployment of UAVs), or particle swarm optimization (used for the periodical update of the positions). We examine two communication services: (a) one bidirectional VoWiFi channel per user; (b) single broadcast VoWiFi channel for announcements. For these services, we study the results obtained for an increasing number of users confined in a small area of 100 m2 as well as in a large area of 10,000 m2. Results show that the drone turnover rate is related to both users’ sparsity and the number of users served by each UAV. For the unicast service, the ratio of UAVs per hour of service tends to increase with user sparsity and the power of radio communication represents 14–16% of the total UAV energy consumption depending on ground user density. In large areas, solutions tend to locate UAVs at higher altitudes seeking increased coverage, which increases energy consumption due to hovering. However, in the VoWiFi broadcast communication service, the traffic is scarce, and solutions are mostly constrained only by coverage. This results in fewer UAVs deployed, less total power consumption (between 20% and 75%), and less sensitivity to the number of served users.


2019 ◽  
Vol 01 (03) ◽  
pp. 148-160
Author(s):  
Krishnaraj Natarajan

The wireless network that are formed on the fly, without relying on the previous infrastructure, including the autonomous devices that lie nearby are called the flying wireless networks. Despite of the networks, self-configuring and self-healing nature, it incurs many challenges due to its mobile nature, limited battery span and the lack of the centralized control, so these wireless network requires a perfect routing protocol addressing the challenges and improving the performance of the network, so the paper presents the survey on the various routing protocols that enhances the performance of the flying wireless network. The survey is further continued with the analysis of the routing protocols to evince the capability of the same on the grounds of network life time, energy consumption and the quality of service.


2020 ◽  
Vol 21 (5) ◽  
pp. 523
Author(s):  
Abidin Şahinoğlu ◽  
Efehan Ulas

In recent years, the necessity for energy in the manufacturing industry has become an important problem because fossil fuel reserves are decreasing in order to produce energy. Therefore, the efficient use of energy has become an important research topic. In this study, energy efficiency is investigated in detail for sustainable life and manufacturing. AISI 4140 material with high hardness of 50 HRC hardness has been applied cryogenic process to improve mechanical and machinability properties. In this experiment study, the effects of feed rate (0.04, 0.08, 0.12 mm/rev), cutting speed (140, 160, 180 m/min), depth of cut (0.05, 0.10, 0.15 mm) and tool radius (0.4, 0.8) on energy consumption, surface roughness and sound intensity were investigated. Then, a new mathematical model with high accuracy was developed. Total power consumption was calculated by considering the instantaneous current value and machining time. As a result, it is found that good surface quality obtained when the feed rate is low, and the tool radius is high and the machining time is shortened, the energy consumption is reduced due to the increase in cutting speed, depth of cut and feed rate. Also, it is found that the tool radius has a limited effect on energy consumption, but low feed value increases energy consumption.


2014 ◽  
Vol 27 (3) ◽  
pp. 435-453 ◽  
Author(s):  
Goran Nikolic ◽  
Mile Stojcev ◽  
Zoran Stamenkovic ◽  
Goran Panic ◽  
Branislav Petrovic

Wireless sensor network consists of a large number of simple sensor nodes that collect information from external environment with sensors, then process the information, and communicate with other neighboring nodes in the network. Usually, sensor nodes operate with exhaustible batteries unattended. Since manual replacement or recharging of the batteries is not an easy, desirable or always possible task, the power consumption becomes a very important issue in the development of these networks. The total power consumption of a node is a result of all steps of the operation: sensing, data processing and radio transmission. In most published papers in literature it is assumed that the sensing subsystem consumes significantly less energy than a radio block. However, this assumption does not apply in numerous applications, especially in the case when power consumption of the sensing activity is comparably bigger than that of a radio. In that context, in this work we focus on the impact of the sensing hardware on the total power consumption of a sensor node. Firstly, we describe the structure of the sensor node architecture, identify its key energy consumption sources, and introduce an energy model for the sensing subsystem as a building block of a node. Secondly, with the aim to reduce energy consumption we investigate joint effectiveness of two common power-saving techniques in a specific sensor node: duty-cycling and power-gating. Duty-cycling is effective at the system level. It is used for switching a node between active and sleep mode (with the duty-cycle factor of 1%, the reduction of in dynamic energy consumption is achieved). Power-gating is used at the circuit level with the goal to decrease the power loss due to the leakage current (in our design, the reduction of dynamic and static energy consumption of off-chip sensor elements as constituents of sensing hardware within a node of is achieved). Compared to a sensor node architecture in which both energy saving techniques are omitted, the conducted MATLsimulation results suggest that in total, thanks to involving duty-cycling and power-gating techniques, a three order of magnitude reduction for sensing activities in energy consumption can be achieved.


Author(s):  
Ng Yen Phing ◽  
M.N. Mohd Warip ◽  
Phaklen Ehkan ◽  
S.Y. Teo

<span lang="EN-US">Network-on-Chip (NoC) is a promising solution to overcome the communication problem of System-on-Chip (SoC) architecture. The execution of topology, routing algorithm and switching technique is significant because it powerfully affects the overall performance of NoC. In the Network-on-Chip, the total power consumption increasing due to the large scale of network. In order to solve it, a clustering method and disable cores and routers based on clustering method is apply onto mesh based NoC architecture. In the proposed approach, the optimization of total area and total power consumption are the major concern. Experiment results show that the proposed method outperformas the existing work. The clustering-mesh based method reduced the total area by 22% to 40 % and total power consumption by 22% to 56% compare to mesh topology. In addition, the proposed method by disable cores and routers based on clustering-mesh based method has decrease the total area by 45% to 87% and total power consumption by 33% to 75% compare to mesh topology.</span>


Sign in / Sign up

Export Citation Format

Share Document