scholarly journals Flame Image Processing and Classification Using a Pre-Trained VGG16 Model in Combustion Diagnosis

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 500
Author(s):  
Zbigniew Omiotek ◽  
Andrzej Kotyra

Nowadays, despite a negative impact on the natural environment, coal combustion is still a significant energy source. One way to minimize the adverse side effects is sophisticated combustion technologies, such as, e.g., staged combustion, co-combustion with biomass, and oxy-combustion. Maintaining the combustion process at its optimal state, considering the emission of harmful substances, safe operation, and costs requires immediate information about the process. Flame image is a primary source of data which proper processing make keeping the combustion at desired conditions, possible. The paper presents a method combining flame image processing with a deep convolutional neural network (DCNN) that ensures high accuracy of identifying undesired combustion states. The method is based on the adaptive selection of the gamma correction coefficient (G) in the flame segmentation process. It uses the empirically determined relationship between the G coefficient and the average intensity of the R image component. The pre-trained VGG16 model for classification was used. It provided accuracy in detecting particular combustion states on the ranging from 82 to 98%. High accuracy and fast processing time make the proposed method possible to apply in the real systems.

During manufacturing process of ceiling fans there may be possibility that any step of manufacturing process can be skipped or improper completion due to malfunctioning of the system. In manufacturing process of fans, the outer plate, stator, rotor, axle and other parts are manufactured and assembled. If the winding machine is not working properly and improper windings is done and no-one can acknowledge that winding machine is not working properly then the whole batch should be designed with defect and this will surely create negative impact on the production process of the industry. So this proposed work will overcome this problem. This paper guides to detect whether the windings are proper or not and detection is carried out by taking picture of armature-windings. If there is any problem in the windings then our system will generate an alert so that other armatures can be protected from failures. Manual results are not so accurate all the time but in manufacturing process we need high accuracy. For this skilled labor is required and for skilled labor we have to pay more, this automated system reduce the need of skilled labor. If fan manufacturing industries use this image processing system then this will be very helpful in increasing production of fans within the completion time with more accuracy


2021 ◽  
Vol 11 (7) ◽  
pp. 2961
Author(s):  
Nikola Čajová Kantová ◽  
Alexander Čaja ◽  
Marek Patsch ◽  
Michal Holubčík ◽  
Peter Ďurčanský

With the combustion of solid fuels, emissions such as particulate matter are also formed, which have a negative impact on human health. Reducing their amount in the air can be achieved by optimizing the combustion process as well as the flue gas flow. This article aims to optimize the flue gas tract using separation baffles. This design can make it possible to capture particulate matter by using three baffles and prevent it from escaping into the air in the flue gas. The geometric parameters of the first baffle were changed twice more. The dependence of the flue gas flow on the baffles was first observed by computational fluid dynamics (CFD) simulations and subsequently verified by the particle imaging velocimetry (PIV) method. Based on the CFD results, the most effective is setting 1 with the same boundary conditions as those during experimental PIV measurements. Setting 2 can capture 1.8% less particles and setting 3 can capture 0.6% less particles than setting 1. Based on the stoichiometric calculations, it would be possible to capture up to 62.3% of the particles in setting 1. The velocities comparison obtained from CFD and PIV confirmed the supposed character of the turbulent flow with vortexes appearing in the flue gas tract, despite some inaccuracies.


2020 ◽  
Vol 12 (1) ◽  
pp. 203-219
Author(s):  
Wei Li ◽  
Xiaohong Chen ◽  
Linshen Xie ◽  
Gong Cheng ◽  
Zhao Liu ◽  
...  

AbstractGroundwater chemical evolution is the key to ensuring the sustainability of local society and economy development. In this study, four river sections and 59 groundwater wells are investigated in the Longgang River (L.R.) basin in South China. Comprehensive hydrochemical analysis methods are adopted to determine the dominant factors controlling the chemical evolution of the local phreatic groundwater and the potential impact of human activities on groundwater quality. The results indicate that the ionic composition of the local phreatic groundwater is dominated by Ca2+ (0.9–144.0 mg/L), HCO3− (4.4–280.0 mg/L), and SO42− (1.0–199.0 mg/L). Ca–Mg–HCO3, Ca–Na–HCO3, and Na–Ca–HCO3 are the major groundwater hydrochemical facies. Water–rock interactions, such as the dissolution of calcite and dolomite, are the primary source of the major ions in the local groundwater. Cation-exchange reaction has its effects on the contents of Ca2+, Mg2+, and Na+. Ammonia concentration of the sampling sections in the L.R. increases from 0.03 to 2.01 mg/L along the flow direction. Groundwater nitrate in the regions of the farmland is attributed to the lowest level of the groundwater quality standards of China, while the same test results are obtained for heavy metals in the industrial park and landfill, suggesting a negative impact of the anthropogenic activities on the local phreatic groundwater quality.


2021 ◽  
Author(s):  
Alessandro Neri ◽  
Federica Battisti ◽  
Sara Baldoni ◽  
Michele Brizzi ◽  
Luca Pallotta ◽  
...  

One type of signal processing is Image processing in which the input used as an image and the output might also be an image or a set of features that are related to the image. Images are handled as a 2D signal using image processing methods. For the fast processing of images, several architectures are suitable for different responsibilities in the image processing practices are important. Various architectures have been used to resolve the high communication problem in image processing systems. In this paper, we will yield a detailed review about these image processing architectures that are commonly used for the purpose of getting higher image quality. Architectures discussed are FPGA, Focal plane SIMPil, SURE engine. At the end, we will also present the comparative study of MSIMD architecture that will facilitate to understand best one.


2020 ◽  
Vol 8 (6) ◽  
pp. 5061-5063

Inspection on the dyed material in the textile industry is facing a challenging task owing to the accurate measurement of the dye concentration added. Currently manual inspection is done. It consumes more time and less accurate. The proposed work provides a solution to above problem. The image of reference material (cloth) is captured and the features are extracted using image processing techniques. The color concentration of both the reference material and the test fabric is compared. If the dye concentration of the test fabric matches with the reference material, then it is a perfect dyed cloth whereas for mismatched samples, the concentration is to be adjusted is displayed. This smart dyeing inspection system reduces the manual operation and saves time and results in high accuracy.


Author(s):  
Kadek Oki Sanjaya ◽  
Gede Indrawan ◽  
Kadek Yota Ernanda Aryanto

Object detection is a topic widely studied by the scientists as a special study in image processing. Although applications of this topic have been implemented, but basically this technology is not yet mature, futher research is needed to developed to obtain the desired result. The aim of the present study is to detect cigarette objects on video by using the Viola Jones method (Haar Cascade Classifier). This method known to have speed and high accuracy because of combining some concept (Haar features, integral image, Adaboost, and Cascade Classifier) to be a main method to detect objects. In this research, detection testing of cigarettes object is in samples of video with the resolution 160x120 pixels, 320x240 pixels, 640x480 pixels under condition of on 1 cigarette object and condition 2 cigarettes object. The result of this research indicated that percentage of average accuracy highest 93.3% at condition 1 cigarette object and 86,7% in the condition 2 cigarette object that was detected on the video with resolution 640x480 pixels, while the percentage of accuracy lowest 90% at condition 1cigarette object, and 81,7% at the condition 2 cigarette objects, detected on the video with the lowest resolution 160x120 pixels. The percentage of average errors at detection cigarettes object was inversely with percentage of accuracy. So that the detection system is able to better recognize the object of the cigarette, then the number of samples in the database needs to be improved and able to represent various types of cigarettes under various conditions and can be added new parameters related to cigarette object


Author(s):  
Hyun Jun Park ◽  
Kwang Baek Kim

<p><span>Intel RealSense depth camera provides depth image using infrared projector and infrared camera. Using infrared radiation makes it possible to measure the depth with high accuracy, but the shadow of infrared radiation makes depth unmeasured regions. Intel RealSense SDK provides a postprocessing algorithm to correct it. However, this algorithm is not enough to be used and needs to be improved. Therefore, we propose a method to correct the depth image using image processing techniques. The proposed method corrects the depth using the adjacent depth information. Experimental results showed that the proposed method corrects the depth image more accurately than the Intel RealSense SDK.</span></p>


Author(s):  
Usama J. Mizher ◽  
Peter A. Velmisov

Abstract. The search for new solutions in the field of energy, preventing negative impact on the environment, is one of the priority tasks for modern society. Natural gas occupies a stable position in the demand of the UES of Russia for fossil fuel. Biogas is a possible alternative fuel from organic waste. Biogas has an increased content of carbon dioxide, which affects the speed of flame propagation, and a lower content of methane, which reduces its heat of combustion. However, the combined combustion of natural gas and biogas, provided that the mixture of fuel and oxidizer is well mixed, can, on the one hand, reduce the maximum adiabatic temperature in the combustion chamber of power boilers at TPPs, and, on the other, increase the stability of biogas combustion. For the combined combustion of natural gas and biogas in operating power boilers, it is necessary to reconstruct the existing burners. For a high-quality reconstruction of burners capable of providing stable and low-toxic combustion of fuel, it is important to have theoretical data on the combustion effect of combustion of combinations of organic fuels on the temperature distribution in the combustion zone and on its maximum value. In this paper, self-similar solutions of the energy equation for axisymmetric motion of a liquid (gas) in a model of a viscous incompressible medium are obtained. Basing on them, a stationary temperature field in swirling jets is constructed. A set of programs based on the ANSYS Fluent software solver has been developed for modeling and researching of thermal and gas-dynamic processes in the combustion chamber. On the basis of the k - ϵ (realizable) turbulence model, the combustion process of a swirling fuel-air mixture is simulated. The results of an analytical and numerical study of the temperature and carbon dioxide distribution in the jet are presented.


2021 ◽  
Author(s):  
Luboslav Straka ◽  
Tibor Krenicky

Due to the growing production on a global scale, the use of fossil fuels is also increasing. Therefore, the control of pollutant emissions produced in the industrial sphere has become a global concern. In general, an imperfect combustion process has a negative impact on the overall efficiency and economy of plant operation, but at the same time increases the share of total emissions in the environment. We also encounter this problem when operating gas fired melting furnaces. Therefore, the paper aimed to describe the results of experimental measurements of the number of emissions produced during the operation of a gas fired melting furnace, which in practice is mainly used for melting alloys. Experimental measurements were oriented to find the most suitable variant of the operating mode of the gas fired melting furnace with regard to minimizing the total amount of emissions produced.


Sign in / Sign up

Export Citation Format

Share Document