scholarly journals Interoperable Nanoparticle Sensor Capable of Strain and Vibration Measurement for Rotor Blade Monitoring

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3648
Author(s):  
Soo-Hong Min ◽  
Ying-Jun Quan ◽  
Su-Young Park ◽  
Gil-Yong Lee ◽  
Sung-Hoon Ahn

Recent advances in nanomaterials technology create the new possibility to fabricate high performance sensors. However, there has been limitations in terms of multivariate measurable and interoperable sensors. In this study, we fabricated an interoperable silver nanoparticle sensor fabricated by an aerodynamically focused nanomaterial (AFN) printing system which is a direct printing technique for inorganic nanomaterials onto a flexible substrate. The printed sensor exhibited the maximum measurable frequency of 850 Hz, and a gauge factor of 290.62. Using a fabricated sensor, we evaluated the sensing performance and demonstrated the measurement independency of strain and vibration sensing. Furthermore, using the proposed signal separation algorithm based on the Kalman filter, strain and vibration were each measured in real time. Finally, we applied the printed sensor to quadrotor condition monitoring to predict the motion of a quadrotor.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jae-Won Lee ◽  
Joon Young Cho ◽  
Mi Jeong Kim ◽  
Jung Hoon Kim ◽  
Jong Hwan Park ◽  
...  

AbstractSoft electronic devices that are bendable and stretchable require stretchable electric or electronic components. Nanostructured conducting materials or soft conducting polymers are one of the most promising fillers to achieve high performance and durability. Here, we report silver nanoparticles (AgNPs) embedded with single-walled carbon nanotubes (SWCNTs) synthesized in aqueous solutions at room temperature, using NaBH4 as a reducing agent in the presence of highly oxidized SWCNTs as efficient nucleation agents. Elastic composite films composed of the AgNPs-embedded SWCNTs, Ag flake, and polydimethylsiloxane are irradiated with radiation from a Xenon flash lamp within a time interval of one second for efficient sintering of conductive fillers. Under high irradiation energy, the stretchable electrodes are created with a maximum conductivity of 4,907 S cm−1 and a highly stretchable stability of over 10,000 cycles under a 20% strain. Moreover, under a low irradiation energy, strain sensors with a gauge factor of 76 under a 20% strain and 5.4 under a 5% strain are fabricated. For practical demonstration, the fabricated stretchable electrode and strain sensor are attached to a human finger for detecting the motions of the finger.


2011 ◽  
Vol 2011 (1) ◽  
pp. 001028-001032
Author(s):  
Michael J. O’Reilly ◽  
Jeff Leal ◽  
Suzette K. Pangrle ◽  
Kenneth Vartanian

Aerosol Jet deposition systems provide an evolutionary alternative to both wire bond and TSV technology. As part of the Vertical Interconnect Pillar (ViP™) process, the Aerosol Jet system prints high density three-dimensional (3D) interconnects enabling multi-function integrated circuits to be stacked and vertically interconnected in high performance System-in-Packages (SiP). The stacks can include two or more die, with a total height of ∼ 2 millimeters. The non-contact printing system has a working distance of several millimeters above the substrate allowing 3D interconnects to be printed with no Z-height adjustments. The Aerosol Jet printhead is configured with multiple nozzles and a closely coupled atomizer to achieve production throughput of greater than 19,000 interconnects per hour. The Aerosol Jet printer deposits silver fine particle ink to form connections on staggered die stacks. High aspect ratio interconnects, less than 30-microns wide and greater than 6-microns tall, are printed at sub 60-micron pitch. After isothermal sintering at 150° C to 200° C for 30 minutes, highly conductive interconnects near bulk resistivity are produced. Pre-production yields exceeding 80% have been realized. This paper will provide further details on the 3D printed interconnect process, current and planned production throughput levels, and process yield and device reliability status.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1853
Author(s):  
Aleksandra P. Kiseleva ◽  
Grigorii O. Kiselev ◽  
Valeria O. Nikolaeva ◽  
Gulaim Seisenbaeva ◽  
Vadim Kessler ◽  
...  

High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 680 ◽  
Author(s):  
Alexandra Virginia Bounegru ◽  
Constantin Apetrei

This paper aims to revise research on carbonaceous nanomaterials used in developing sensors. In general, nanomaterials are known to be useful in developing high-performance sensors due to their unique physical and chemical properties. Thus, descriptions were made for various structural features, properties, and manner of functionalization of carbon-based nanomaterials used in electrochemical sensors. Of the commonly used technologies in manufacturing electrochemical sensors, the screen-printing technique was described, highlighting the advantages of this type of device. In addition, an analysis was performed in point of the various applications of carbon-based nanomaterial sensors to detect analytes of interest in different sample types.


2014 ◽  
Vol 53 (33) ◽  
pp. 7868 ◽  
Author(s):  
Zhigang Zang ◽  
Xiaosheng Tang ◽  
Xianming Liu ◽  
Xiaohua Lei ◽  
Weiming Chen

2012 ◽  
Vol 1407 ◽  
Author(s):  
Da Zhao ◽  
Tao Liu ◽  
Mei Zhang ◽  
Jen-Ming Chen ◽  
Ben Wang

ABSTRACTInnovative printing technology enables fine feature deposition (below 10μm) of electronic materials onto low-temperature, non-planar substrates without masks. This could be a promising technology to meet the requirements of present and future microelectronic systems. Silver nanoparticles (NP) ink is widely used for printed electronics; however, its electrical conductivity is low compared to bulk materials. In order to improve the electrical conductivity of printed tracks for the aerosol printing technique, we developed a novel carbon nanotubes (CNTs)/silver NP ink by mechanical stirring and sonication. The produced sample inks with different concentration of CNTs that were printed with Aerosol Jet® printing system. We found that the CNTs bridged the defects in some printed silver lines, thereby lowering the electrical resistivity by 38%. However, no further improvements were observed with a higher CNT concentration in the silver NP ink samples. We hypothesize that CNT bridges connects the defects thus decreasing the resistivity of printed silver lines when CNT concentration is under the percolation level. However, when it is above a concentration threshold, the resistivity of printed silver lines stops decreasing and even increases because of Schottky barrier effect.


2004 ◽  
Vol 814 ◽  
Author(s):  
G. Nisato ◽  
C. Mutsaers ◽  
H. Buijk ◽  
P. Duineveld ◽  
E. Janssen ◽  
...  

AbstractFlexible, free shape displays are the enabling technology for new robust, lightweight, extremely thin, portable electronic devices. Polymer Light Emitting Diodes (PLED) are especially suited for these applications, due to their fast response time, low voltage, high luminous efficiency and viewing angle performance. On the other hand, PLED displays are extremely sensitive to moisture and oxygen. Substrate materials provided with high performance hermetic and conducting layers are therefore an essential component for manufacturing these flexible devices. Polymer based substrates provide the necessary mechanical flexibility; they also require several thin, brittle, functional inorganic layers such diffusion barriers and transparent electrodes. The structural integrity, dimensional stability and thermal properties of the substrate stack are crucial to insure device functionality and reliability. For polymer-based substrate several effects lead to dimensional variation of the substrates, such as solvent uptake, physical ageing of the polymer base, thermal expansion and stress induced deformations. These effects must be taken into account to successfully perform classic photolithographic steps.Ink-jet printing is a critical enabling technology for flexible PLED displays, providing a customizable means to dispense solution-based polymers onto a flexible substrate, allowing for multi-color devices. On the other hand, IJP must meet several challenges, especially to comply with industrial applications. For example, accurate landing position of the droplets to form homogeneous hole-transport and electroluminescent layers as well as good wetting characteristic of the substrates must be obtained with reliable high throughput techniques.


Sign in / Sign up

Export Citation Format

Share Document