scholarly journals A CMOS RF Receiver with Improved Resilience to OFDM-Induced Second-Order Intermodulation Distortion for MedRadio Biomedical Devices and Sensors

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5303
Author(s):  
Yongho Lee ◽  
Shinil Chang ◽  
Jungah Kim ◽  
Hyunchol Shin

A MedRadio RF receiver integrated circuit for implanted and wearable biomedical devices must be resilient to the out-of-band (OOB) orthogonal frequency division modulation (OFDM) blocker. As the OFDM is widely adopted for various broadcasting and communication systems in the ultra-high frequency (UHF) band, the selectivity performance of the MedRadio RF receiver can severely deteriorate by the second-order intermodulation (IM2) distortion induced by the OOB OFDM blocker. An analytical investigation shows how the OFDM-induced IM2 distortion power can be translated to an equivalent two-tone-induced IM2 distortion power. It makes the OFDM-induced IM2 analysis and characterization process for a MedRadio RF receiver much simpler and more straightforward. A MedRadio RF receiver integrated circuit with a significantly improved resilience to the OOB IM2 distortion is designed in 65 nm complementary metal-oxide-semiconductor (CMOS). The designed RF receiver is based on low-IF architecture, comprising a low-noise amplifier, single-to-differential transconductance stage, quadrature passive mixer, trans-impedance amplifier (TIA), image-rejecting complex bandpass filter, and fractional phase-locked loop synthesizer. We describe design techniques for the IM2 calibration through the gate bias tuning at the mixer, and the dc offset calibration that overcomes the conflict with the preceding IM2 calibration through the body bias tuning at the TIA. Measured results show that the OOB carrier-to-interference ratio (CIR) performance is significantly improved by 4–11 dB through the proposed IM2 calibration. The measured maximum tolerable CIR is found to be between −40.2 and −71.2 dBc for the two-tone blocker condition and between −70 and −77 dBc for the single-tone blocker condition. The analytical and experimental results of this work will be essential to improve the selectivity performance of a MedRadio RF receiver against the OOB OFDM-blocker-induced IM2 distortion and, thus, improve the robustness of the biomedical devices in harsh wireless environments in the MedRadio and UHF bands.

Micromachines ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 65
Author(s):  
Wenhao Zhi ◽  
Qingxiao Quan ◽  
Pingping Yu ◽  
Yanfeng Jiang

Photodiode is one of the key components in optoelectronic technology, which is used to convert optical signal into electrical ones in modern communication systems. In this paper, an avalanche photodiode (APD) is designed and fulfilled, which is compatible with Taiwan Semiconductor Manufacturing Company (TSMC) 45-nm standard complementary metal–oxide–semiconductor (CMOS) technology without any process modification. The APD based on 45 nm process is beneficial to realize a smaller and more complex monolithically integrated optoelectronic chip. The fabricated CMOS APD operates at 850 nm wavelength optical communication. Its bandwidth can be as high as 8.4 GHz with 0.56 A/W responsivity at reverse bias of 20.8 V. Its active area is designed to be 20 × 20 μm2. The Simulation Program with Integrated Circuit Emphasis (SPICE) model of the APD is also proposed and verified. The key parameters are extracted based on its electrical, optical and frequency responses by parameter fitting. The device has wide potential application for optical communication systems.


2015 ◽  
Vol 14 (5) ◽  
pp. 5661-5686
Author(s):  
Essra E. Al-Bayati ◽  
R. S. Fyath

The design of distributed amplifiers (DAs) is one of the challenging aspects in emerging ultra high bit rate optical communication systems. This is especially important when implementation in submicron silicon complementary metal oxide semiconductor (CMOS) process is considered. This work presents a novel design scheme for DAs suitable for frontend amplification in 40 and 100 Gb/s optical receivers. The goal is to achieve high flat gain and low noise figure (NF) over the ultra wideband operating bandwidth (BW). The design scheme combines shifted second tire (SST) matrix configuration with cascode amplification cell configuration and uses m-derived technique. Performance investigation of the proposed DA architecture is carried out and the results are compared with that of other DA architectures reported in the literature. The investigation covers the gain and NF spectra when the DAs are implemented in 180, 130, 90, 65 and 45 CMOS standards.The simulation results reveal that the proposed DA architecture offers the highest gain with highest degree of flatness and low NF when compared with other DA configurations. Gain-BW products of 42772 and 21137 GHz are achieved when the amplifier is designed for 40 and 100 Gb/s operation, respectively, using 45 nm CMOS standard. Thesimulation is performed using AWR Microwave Office (version 10).


2021 ◽  
Author(s):  
Keith Powell ◽  
Liwei Li ◽  
Amirhassan Shams-Ansari ◽  
Jianfu Wang ◽  
Debin Meng ◽  
...  

Abstract The electro-optic modulator encodes electrical signals onto an optical carrier, and is essential for the operation of global communication systems and data centers that society demands. An ideal modulator results from scalable semiconductor fabrication and is integrable with electronics. Accordingly, it is compatible with complementary metal-oxide-semiconductor (CMOS) fabrication processes. Moreover, modulators using the Pockels effect enables low loss, ultrafast, and wide-bandwidth data transmission. Although strained silicon-based modulators could satisfy these criteria, fundamental limitations such as two-photon absorption, poor thermal stability and a narrow transparency window hinder their performance. On the other hand, as a wide bandgap semiconductor material, silicon carbide is CMOS compatible and does not suffer from these limitations. Due to its combination of color centers, high breakdown voltage, and strong thermal conductivity, silicon carbide is a promising material for CMOS electronics and photonics with applications ranging from sensors to quantum and nonlinear photonics. Importantly, silicon carbide exhibits the Pockels effect, but a modulator has not been realized since the discovery of this effect more than three decades ago. Here we design, fabricate, and demonstrate the first Pockels modulator in silicon carbide. Specifically, we realize a waveguide-integrated, small form-factor, gigahertz-bandwidth modulator that can operate using CMOS-level drive voltages on a thin film of silicon carbide on insulator. Furthermore, the device features no signal degradation and stable operation at high optical intensities (913 kW/mm2), allowing for high optical signal-to-noise ratios for long distance communications. Our work unites Pockels electro-optics with a CMOS platform to pave the way for foundry-compatible integrated photonics.


Author(s):  
Widianto Widianto ◽  
Lailis Syafaah ◽  
Nurhadi Nurhadi

In this paper, effects of process variations in a HCMOS (High-Speed Complementary Metal Oxide Semiconductor) IC (Integrated Circuit) are examined using a Monte Carlo SPICE (Simulation Program with Integrated Circuit Emphasis) simulation. The variations of the IC are L and VTO variations. An evaluation method is used to evaluate the effects of the variations by modeling it using a normal (Gaussian) distribution. The simulation results show that the IC may be detected as a defective IC caused by the variations based on large supply currents flow to it. 


2016 ◽  
Vol 833 ◽  
pp. 135-139
Author(s):  
Dayang Nur Salmi Dharmiza Awang Salleh ◽  
Rohana Sapawi

Recent technology requires multistandard Radio Frequency (RF) chips for multipurpose wireless applications. In RF circuits, a low-noise amplifier (LNA) plays the key role in determining the receiver’s performance. With CMOS technology scaling, various designs has been adopted to study circuit’s characteristic and variation. In this paper, we present the results of scalable wideband LNA design based on complementary metal oxide semiconductor (CMOS), with its variance study. The design was fabricated in 180nm, 90nm, 65nm and 40nm CMOS technology.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3391
Author(s):  
Francelino Freitas Carvalho ◽  
Carlos Augusto de Moraes Cruz ◽  
Greicy Costa Marques ◽  
Kayque Martins Cruz Damasceno

Targeting 3D image reconstruction and depth sensing, a desirable feature for complementary metal oxide semiconductor (CMOS) image sensors is the ability to detect local light incident angle and the light polarization. In the last years, advances in the CMOS technologies have enabled dedicated circuits to determine these parameters in an image sensor. However, due to the great number of pixels required in a cluster to enable such functionality, implementing such features in regular CMOS imagers is still not viable. The current state-of-the-art solutions require eight pixels in a cluster to detect local light intensity, incident angle and polarization. The technique to detect local incident angle is widely exploited in the literature, and the authors have shown in previous works that it is possible to perform the job with a cluster of only four pixels. In this work, the authors explore three novelties: a mean to determine three of four Stokes parameters, the new paradigm in polarization cluster-pixel design, and the extended ability to detect both the local light angle and intensity. The features of the proposed pixel cluster are demonstrated through simulation program with integrated circuit emphasis (SPICE) of the regular Quadrature Pixel Cluster and Polarization Pixel Cluster models, the results of which are compliant with experimental results presented in the literature.


Nanophotonics ◽  
2017 ◽  
Vol 6 (6) ◽  
pp. 1343-1352 ◽  
Author(s):  
Chuantong Cheng ◽  
Beiju Huang ◽  
Xurui Mao ◽  
Zanyun Zhang ◽  
Zan Zhang ◽  
...  

AbstractOptical receivers with potentially high operation bandwidth and low cost have received considerable interest due to rapidly growing data traffic and potential Tb/s optical interconnect requirements. Experimental realization of 65 GHz optical signal detection and 262 GHz intrinsic operation speed reveals the significance role of graphene photodetectors (PDs) in optical interconnect domains. In this work, a novel complementary metal oxide semiconductor post-backend process has been developed for integrating graphene PDs onto silicon integrated circuit chips. A prototype monolithic optoelectronic integrated optical receiver has been successfully demonstrated for the first time. Moreover, this is a firstly reported broadband optical receiver benefiting from natural broadband light absorption features of graphene material. This work is a perfect exhibition of the concept of monolithic optoelectronic integration and will pave way to monolithically integrated graphene optoelectronic devices with silicon ICs for three-dimensional optoelectronic integrated circuit chips.


2020 ◽  
Vol 10 (1) ◽  
pp. 399 ◽  
Author(s):  
Kwonsang Han ◽  
Hyungseup Kim ◽  
Jaesung Kim ◽  
Donggeun You ◽  
Hyunwoo Heo ◽  
...  

This paper proposes a low noise readout integrated circuit (IC) with a chopper-stabilized multipath operational amplifier suitable for a Wheatstone bridge sensor. The input voltage of the readout IC changes due to a change in input resistance, and is efficiently amplified using a three-operational amplifier instrumentation amplifier (IA) structure with high input impedance and adjustable gain. Furthermore, a chopper-stabilized multipath structure is applied to the operational amplifier, and a ripple reduction loop (RRL) in the low frequency path (LFP) is employed to attenuate the ripple generated by the chopper stabilization technique. A 12-bit successive approximation register (SAR) analog-to-digital converter (ADC) is employed to convert the output voltage of the three-operational amplifier IA into digital code. The Wheatstone bridge readout IC is manufactured using a standard 0.18 µm complementary metal-oxide-semiconductor (CMOS) technology, drawing 833 µA current from a 1.8 V supply. The input range and the input referred noise are ±20 mV and 24.88 nV/√Hz, respectively.


Sign in / Sign up

Export Citation Format

Share Document