scholarly journals The Application of Quaternions to Strap-Down MEMS Sensor Data

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7658
Author(s):  
Peter M. Dickson ◽  
Philip J. Rae

We describe the mathematical transformations required to convert the data recorded using typical 6-axis microelectromechanical systems (MEMS) sensor packages (3-axis rate gyroscopes and 3-axis accelerometers) when attached to an object undergoing a short duration loading event, such as blast loading, where inertial data alone are sufficient to track the object motion. By using the quaternion description, the complex object rotations and displacements that typically occur are translated into the more convenient earth frame of reference. An illustrative example is presented where a large and heavy object was thrown by the action of a very strong air blast in a complex manner. The data conversion process yielded an accurate animation of the object’s subsequent motion.

2001 ◽  
Author(s):  
Emily J. Pryputniewicz ◽  
John P. Angelosanto ◽  
Gordon C. Brown ◽  
Cosme Furlong ◽  
Ryszard J. Pryputniewicz

Abstract Using recent advances in microelectromechanical systems (MEMS) technology, a new multivariable sensor was developed. This MEMS sensor, capable of measuring temperature, absolute pressure, and differential pressure on a single chip, is particularly suitable for applications in process control industry. However, functional operation of the sensor depends on validation of its performance under specific test conditions. We have developed a hybrid methodology, based on analysis and measurements, that allows such validation. In this paper, the MEMS multivariable sensor is described, the hybrid methodology is outlined, and its use is illustrated with representative results.


2015 ◽  
Vol 69 (2) ◽  
pp. 373-390 ◽  
Author(s):  
Qingjiang Wang ◽  
You Li ◽  
Xiaoji Niu

This paper investigates the thermal characteristics of typical Micro Electro-Mechanical System (MEMS) Inertial Measurement Units (IMUs) with a reliable thermal test procedure. Test results show that MEMS sensor errors, not only biases, but also scale factors and non-orthogonalities, may vary significantly with temperature. Also, MEMS sensor errors can have significant inconsistent curves under different temperature changing profiles. The existence of such inconsistencies posed a challenge to the following assumption of thermal calibration: the thermal drift of a sensor error is only related to the temperature of the sensor core. A robust way to mitigate this issue is given by using the sensor data during both heat-and-stay and cool-and-stay processes to establish the final thermal models. The performance of both IMUs and inertial navigation systems improved significantly after compensation with the established thermal models. Additionally, the variation of the IMU thermal parameters with time was observed, which suggests that periodical thermal calibration is necessary for MEMS IMUs.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Clara Sanz Morère ◽  
Łukasz Surażyński ◽  
Ana Rodrigo Pérez-Tabernero ◽  
Erkki Vihriälä ◽  
Teemu Myllylä

Locomotor activities are part and parcel of daily human life. During walking or running, feet are subjected to high plantar pressure, leading sometimes to limb problems, pain, or foot ulceration. A current objective in foot plantar pressure measurements is developing sensors that are small in size, lightweight, and energy efficient, while enabling high mobility, particularly for wearable applications. Moreover, improvements in spatial resolution, accuracy, and sensitivity are of interest. Sensors with improved sensing techniques can be applied to a variety of research problems: diagnosing limb problems, footwear design, or injury prevention. This paper reviews commercially available sensors used in foot plantar pressure measurements and proposes the utilization of pressure sensors based on the MEMS (microelectromechanical systems) technique. Pressure sensors based on this technique have the capacity to measure pressure with high accuracy and linearity up to high pressure levels. Moreover, being small in size, they are highly suitable for this type of measurement. We present two MEMS sensor models and study their suitability for the intended purpose by performing several experiments. Preliminary results indicate that the sensors are indeed suitable for measuring foot plantar pressure. Importantly, by measuring pressure continuously, they can also be utilized for body balance measurements.


Author(s):  
S. Sathyanarayanan ◽  
A. Vimala Juliet

Micromachining technology has greatly benefited from the success of developments in implantable biomedical microdevices. In this paper, microelectromechanical systems (MEMS) capacitive pressure sensor operating for biomedical applications in the range of 20–400 mm Hg was designed. Employing the microelectromechanical systems technology, high sensor sensitivities and resolutions have been achieved. Capacitive sensing uses the diaphragm deformation-induced capacitance change. The sensor composed of a rectangular polysilicon diaphragm that deflects due to pressure applied over it. Applied pressure deflects the 2 µm diaphragm changing the capacitance between the polysilicon diaphragm and gold flat electrode deposited on a glass Pyrex substrate. The MEMS capacitive pressure sensor achieves good linearity and large operating pressure range. The static and thermo electromechanical analysis were performed. The finite element analysis data results were generated. The capacitive response of the sensor performed as expected according to the relationship of the spacing of the plates.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2146
Author(s):  
Mikhail Zymbler ◽  
Elena Ivanova

Currently, big sensor data arise in a wide spectrum of Industry 4.0, Internet of Things, and Smart City applications. In such subject domains, sensors tend to have a high frequency and produce massive time series in a relatively short time interval. The data collected from the sensors are subject to mining in order to make strategic decisions. In the article, we consider the problem of choosing a Time Series Database Management System (TSDBMS) to provide efficient storing and mining of big sensor data. We overview InfluxDB, OpenTSDB, and TimescaleDB, which are among the most popular state-of-the-art TSDBMSs, and represent different categories of such systems, namely native, add-ons over NoSQL systems, and add-ons over relational DBMSs (RDBMSs), respectively. Our overview shows that, at present, TSDBMSs offer a modest built-in toolset to mine big sensor data. This leads to the use of third-party mining systems and unwanted overhead costs due to exporting data outside a TSDBMS, data conversion, and so on. We propose an approach to managing and mining sensor data inside RDBMSs that exploits the Matrix Profile concept. A Matrix Profile is a data structure that annotates a time series through the index of and the distance to the nearest neighbor of each subsequence of the time series and serves as a basis to discover motifs, anomalies, and other time-series data mining primitives. This approach is implemented as a PostgreSQL extension that allows an application programmer both to compute matrix profiles and mining primitives and to represent them as relational tables. Experimental case studies show that our approach surpasses the above-mentioned out-of-TSDBMS competitors in terms of performance since it assumes that sensor data are mined inside a TSDBMS at no significant overhead costs.


2015 ◽  
Vol 4 (1) ◽  
pp. 97-102 ◽  
Author(s):  
A. Dickow ◽  
G. Feiertag

Abstract. In this paper we present a systematic method to determine sets of close to optimal sensor calibration points for a polynomial approximation. For each set of calibration points a polynomial is used to fit the nonlinear sensor response to the calibration reference. The polynomial parameters are calculated using ordinary least square fit. To determine the quality of each calibration, reference sensor data is measured at discrete test conditions. As an error indicator for the quality of a calibration the root mean square deviation between the calibration polynomial and the reference measurement is calculated. The calibration polynomials and the error indicators are calculated for all possible calibration point sets. To find close to optimal calibration point sets, the worst 99% of the calibration options are dismissed. This results in a multi-dimensional probability distribution of the probably best calibration point sets. In an experiment, barometric MEMS (micro-electromechanical systems) pressure sensors are calibrated using the proposed calibration method at several temperatures and pressures. The framework is applied to a batch of six of each of the following sensor types: Bosch BMP085, Bosch BMP180, and EPCOS T5400. Results indicate which set of calibration points should be chosen to achieve good calibration results.


2021 ◽  
Author(s):  
Phoebe Utting ◽  
Giles Hammond ◽  
Abhinav Prasad ◽  
Richard Middlemiss

<p>Gravimetry has many useful applications from volcanology to oil exploration; being a method able to infer density variations beneath the ground. Therefore, it can be used to provide insight into subsurface processes such as those related to the hydrothermal and magmatic systems of volcanoes. Existing gravimeters are costly and heavy, but this is changing with the utilisation of a technology most notably used in mobile phone accelerometers: MEMS –(Microelectromechanical-systems). Glasgow University has already developed a relative MEMS gravimeter and is currently collaborating with multiple European institutions to make a gravity sensor network around Mt Etna - NEWTON-g. A second generation of the MEMS sensor is now being designed and fabricated in the form of a semi-absolute pendulum gravimeter. Gravity data for geodetic and geophysical use were provided by pendulum measurements from the 18<sup>th</sup> to the 20<sup>th</sup> century. However, scientists and engineers reached the limit of fabrication tolerances and readout accuracy approximately 100 years ago. With nanofabrication and modern electronics techniques, it is now possible to create a competitive pendulum gravimeter again. The pendulum method is used to determine gravity values from the oscillation period of a pendulum with known length. The current design couples two pendulums together. Here, an optical shadow-sensor pendulum readout technique is presented. This employs an LED and split photodiode set-up. This optical readout can provide measurements to sub-nanometre precision, which could enable gravitational sensitivities for useful geophysical surveying. If semi-absolute values of gravity can be measured, then instrumental drift concerns are reduced. Additionally, the need for calibration against commercial absolute gravimeters may not be necessary. This promotes improved accessibility of gravity measurements at an affordable cost.</p>


2021 ◽  
Vol 10 (1) ◽  
pp. 58
Author(s):  
Liv Rittmeier ◽  
Thomas Roloff ◽  
Jan Niklas Haus ◽  
Andreas Dietzel ◽  
Michael Sinapius

Microelectromechanical Systems (MEMS) are a current subject of research in the field of structural health monitoring (SHM) for the detection of guided ultrasonic waves (GUW). The dispersive behaviour of GUW, reflections and other kinds of wave interactions might result in a complex wave field that requires a specific analysis and interpretation of the recorded signals. This makes it difficult or impossible to interpret the sensor signal regarding the distinguishability between the sensor transfer behaviour and the specific behaviour of the test structure. Therefore, a proper application-suited design of the tested structure is crucial for reliable sensor characterisation. The aim of this contribution is the design and evaluation of a setup that allows a representative situation for a GUW application and provides a defined vibration energy for a MEMS sensor characterisation. Parameters such as the specimen’s geometry, material properties and the sensor specifications are taken into account as well as the experimental settings of the GUW excitation. Furthermore, the requirements for the test application case are discussed.


MIS Quarterly ◽  
2021 ◽  
Vol 45 (2) ◽  
pp. 859-896
Author(s):  
Hongyi Zhu ◽  
Sagar Samtani ◽  
Randall Brown ◽  
Hsinchun Chen

Ensuring the health and safety of senior citizens who live alone is a growing societal concern. The Activity of Daily Living (ADL) approach is a common means to monitor disease progression and the ability of these individuals to care for themselves. However, the prevailing sensor-based ADL monitoring systems primarily rely on wearable motion sensors, capture insufficient information for accurate ADL recognition, and do not provide a comprehensive understanding of ADLs at different granularities. Current healthcare IS and mobile analytics research focuses on studying the system, device, and provided services, and is in need of an end-to-end solution to comprehensively recognize ADLs based on mobile sensor data. This study adopts the design science paradigm and employs advanced deep learning algorithms to develop a novel hierarchical, multiphase ADL recognition framework to model ADLs at different granularities. We propose a novel 2D interaction kernel for convolutional neural networks to leverage interactions between human and object motion sensors. We rigorously evaluate each proposed module and the entire framework against state-of-the-art benchmarks (e.g., support vector machines, DeepConvLSTM, hidden Markov models, and topic-modeling-based ADLR) on two real-life motion sensor datasets that consist of ADLs at varying granularities: Opportunity and INTER. Results and a case study demonstrate that our framework can recognize ADLs at different levels more accurately. We discuss how stakeholders can further benefit from our proposed framework. Beyond demonstrating practical utility, we discuss contributions to the IS knowledge base for future design science-based cybersecurity, healthcare, and mobile analytics applications.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
T. Vigneswari ◽  
M. A. Maluk Mohamed

Advances in microelectromechanical systems (MEMS) and nanotechnology have enabled design of low power wireless sensor nodes capable of sensing different vital signs in our body. These nodes can communicate with each other to aggregate data and transmit vital parameters to a base station (BS). The data collected in the base station can be used to monitor health in real time. The patient wearing sensors may be mobile leading to aggregation of data from different BS for processing. Processing real time data is compute-intensive and telemedicine facilities may not have appropriate hardware to process the real time data effectively. To overcome this, sensor grid has been proposed in literature wherein sensor data is integrated to the grid for processing. This work proposes a scheduling algorithm to efficiently process telemedicine data in the grid. The proposed algorithm uses the popular swarm intelligence algorithm for scheduling to overcome the NP complete problem of grid scheduling. Results compared with other heuristic scheduling algorithms show the effectiveness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document