scholarly journals Interaction between Biofilm Formation, Surface Material and Cleanability Considering Different Materials Used in Pig Facilities—An Overview

2021 ◽  
Vol 13 (11) ◽  
pp. 5836
Author(s):  
Erika Yukari Nakanishi ◽  
Joahnn H. Palacios ◽  
Stéphane Godbout ◽  
Sébastien Fournel

Sometimes the contamination in pig facilities can persist even after the washing and disinfection procedure. Some factors could influence this persistence, such as bacteria type, biofilm formation, material type and washing parameters. Therefore, this review summarizes how the type of surface can influence bacteria colonization and how the washing procedure can impact sanitary aspects, considering the different materials used in pig facilities. Studies have shown that biofilm formation on the surface of different materials is a complex system influenced by environmental conditions and the characteristics of each material’s surface and group of bacteria. These parameters, along with the washing parameters, are the main factors having an impact on the removal or persistence of biofilm in pig facilities even after the cleaning and disinfection processes. Some options are available for proper removal of biofilms, such as chemical treatments (i.e., detergent application), the use of hot water (which is indicated for some materials) and a longer washing time.

2021 ◽  
Vol 11 (23) ◽  
pp. 11214
Author(s):  
Ruth Acosta ◽  
Klaus Heckmann ◽  
Jürgen Sievers ◽  
Tim Schopf ◽  
Tobias Bill ◽  
...  

The assessment of metallic materials used in power plants’ piping represents a big challenge due to the thermal transients and the environmental conditions to which they are exposed. At present, a lack of information related to degradation mechanisms in structures and materials is covered by safety factors in its design, and in some cases, the replacement of components is prescribed after a determined period of time without knowledge of the true degree of degradation. In the collaborative project “Microstructure-based assessment of maximum service life of nuclear materials and components exposed to corrosion and fatigue (MibaLeb)”, a methodology for the assessment of materials’ degradation is being developed, which combines the use of NDT techniques for materials characterization, an optimized fatigue lifetime analysis using short time evaluation procedures (STEPs) and numerical simulations. In this investigation, the AISI 347 (X6CrNiNb18-10) is being analyzed at different conditions in order to validate the methodology. Besides microstructural analysis, tensile and fatigue tests, all to characterize the material, a pressurized hot water pipe exposed to a series of flow conditions will be evaluated in terms of full-scale testing as well as prognostic evaluation, where the latter will be based on the materials’ data generated, which should prognose changes in the material’s condition, specifically in a pre-cracked stage. This paper provides an overview of the program, while the more material’s related aspects are presented in the subsequent paper.


Author(s):  
Giuseppina Di Martino ◽  
Salvatore Pasqua ◽  
Bruno Douradinha ◽  
Francesco Monaco ◽  
Chiara Di Bartolo ◽  
...  

To evaluate and validate the efficacy of disinfectants used in our cleaning procedure, in order to reduce pharmaceutical hospital surfaces’ contaminations, we tested the action of three commercial disinfectants on small representative samples of the surfaces present in our hospital cleanrooms. These samples (or coupons) were contaminated with selected microorganisms for the validation of the disinfectants. The coupons were sampled before and after disinfection and the microbial load was assessed to calculate the Log10 reduction index. Subsequently, we developed and validated a disinfection procedure on real surfaces inside the cleanrooms intentionally contaminated with microorganisms, using approximately 107–108 total colony forming units per coupon. Our results showed a bactericidal, fungicidal, and sporicidal efficacy coherent to the acceptance criteria suggested by United States Pharmacopeia 35 <1072>. The correct implementation of our cleaning and disinfection procedure, respecting stipulated concentrations and contact times, led to a reduction of at least 6 Log10 for all microorganisms used. The proposed disinfection procedure reduced the pharmaceutical hospital surfaces’ contaminations, limited the propagation of microorganisms in points adjacent to the disinfected area, and ensured high disinfection and safety levels for operators, patients, and treated surfaces.


2017 ◽  
Vol 15 (6) ◽  
pp. 942-954 ◽  
Author(s):  
Parul Gulati ◽  
Moushumi Ghosh

Sphingomonas paucimobilis, an oligotroph, is well recognized for its potential for biofilm formation. The present study explored the biofilm forming ability of a strain isolated from municipal drinking water on plumbing materials. The intensity of biofilm formation of this strain on different plumbing materials was examined by using 1 × 1 cm2 pieces of six different pipe materials, i.e. polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), aluminium (Al), copper (Cu) and rubber (R) and observing by staining with the chemical chromophore, Calcofluor. To understand whether biofilm formation occurs under flow through conditions, a laboratory-scale simulated distribution system, comprised of the above materials was fabricated. Biofilm samples were collected from the designed system at different biofilm ages (10, 40 and 90 hours old) and enumerated. The results indicated that the biofilm formation occurred on all plumbing materials with Cu and R as exceptions. The intensity of biofilm formation was found to be maximum on PVC followed by PP and PE. We also demonstrated the chemical chromophore (Calcofluor) successfully for rapid and easy visual detection of biofilms, validated by scanning electron microscope (SEM) analysis of the plumbing materials. Chlorination has little effect in preventing biofilm development.


2018 ◽  
Vol 48 (12) ◽  
Author(s):  
Janaina Viana da Rosa ◽  
Natália Volpato da Conceição ◽  
Rita de Cássia dos Santos da Conceição ◽  
Cláudio Dias Timm

ABSTRACT: Vibrio parahaemolyticus is an important pathogen for both fish industry and consumers. It forms biofilm which makes it difficult to eliminate this microorganism using sanitizers. This study aimed to assess biofilm formation on different surfaces and effect of biofilm on resistance to sanitizers. Eight isolates of biofilm-forming V. parahaemolyticus were tested for the ability to form biofilms on a number of surfaces including high density polyethylene, stainless steel, glass, exoskeleton of Farfantepenaeus paulensis (Pink Shrimp), and operculum of Micropogonias furnieri (Whitemouth Croaker). Efficiency of sanitizer sodium hypochlorite against the bacteria was evaluated in the biofilms formed on the surface of the materials used; out the eight strains analyzed four formed biofilm on different surfaces. The present study shows that there are variations between surfaces in terms of biofilm formation, with more than one bacterial strain being able to form biofilm on the surface of the operculum of M. furnieri and on high density polyethylene as well. One isolate formed biofilm on glass, and one isolate formed biofilm on stainless steel. Sanitizers reduced biofilm formation on all surfaces. Based on our findings, we concluded that V. parahaemolyticus isolates have different ability to form biofilm on different surfaces. No isolates formed biofilm on shrimp shells. Results of this study also showed that sodium hypochlorite eat a concentration of 20 parts per million (20ppm) of Cl2, albeit not able to eliminate bacteria reported in biofilms, is still capable of reducing bacterial populations.


2012 ◽  
Vol 7 (3) ◽  
pp. 114-130 ◽  
Author(s):  
S. E. Zubriski ◽  
K. J. Dick

The operating efficiency of evacuated tubes themselves under varying environmental conditions and installation scenarios, independent of water and space heating auxiliary equipment, are not readily available values. Further, Manitoba specific data has not been established. The purpose of this research program was to measure the efficiency of evacuated tube solar collectors under various operating conditions including: the angle of inclination towards the incident solar radiation, heat transfer fluid flow rate, glazing installation, and number of evacuated tubes. The operating conditions and configurations were chosen to represent realistic or probable installation scenarios and environmental conditions. Furthermore, the research aimed to identify the suitability of evacuated tube solar collectors to each of the scenarios. These design values are of use for appropriate sizing of water or space heating systems, system configuration and optimization, and calculation of return on investment. The scope of the research project was limited to the efficiency of various configurations of a 32-tube panel, not the entire solar domestic hot water or space heating system. Thus, factors such as heat loss in the tubing, solar storage tank, and heat exchanger efficiency were not investigated. The findings indicated that efficiency varied by approximately 5% between the different collector configurations, as observed from the overlay graph of results. When the efficiency of a collector is considered within a system it is proposed that effectiveness may be a better measure of overall performance.


In this chapter, a general overview of innovation (definition and typologies) is presented based on economics and management of innovation literature. Since the pioneering work of Schumpeter (1934, 1942), a growing body of literature has concentrated on technological change in industries. Technology is one of the main factors shaping environmental conditions of firms. The dynamics of innovation and technology may require several approaches to be analyzed. Innovation in various sectors is driven by standards and/or patents and other Intellectual Property Rights (IPR). Standards and patents are helpful for tracking globalization patterns. The current digital economy is characterized by fierce patents and standards battles. Standards and patents are helpful for tracking globalization patterns. The increasing development of Internet traffic and some of the key enabling technologies for the new digital economy called disruptive technologies are introduced.


2012 ◽  
Vol 78 (19) ◽  
pp. 6850-6858 ◽  
Author(s):  
Maha Farhat ◽  
Marina Moletta-Denat ◽  
Jacques Frère ◽  
Séverine Onillon ◽  
Marie-Cécile Trouilhé ◽  
...  

ABSTRACTLegionellaspecies are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics ofLegionellaspp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics ofLegionellaand eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenicLegionellaspecies remained after the heat shock and chemical treatments (Legionella pneumophilaandLegionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebaesp.,Vannellasp., andHartmanella vermiformis) and after the first heat shock treatment, but onlyH. vermiformisremained. However, another protozoan affiliated with Alveolata, which is known as a host cell forLegionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effectiveLegionelladisinfection may be dependent on the elimination of these important microbial components. We suggest that eradicatingLegionellain hot water networks requires better study of bacterial and eukaryal species associated withLegionellain biofilms.


Foods ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 653 ◽  
Author(s):  
Rux ◽  
Efe ◽  
Ulrichs ◽  
Huyskens-Keil ◽  
Hassenberg ◽  
...  

Processing, especially cutting, reduces the shelf life of fruits. In practice, fresh-cut fruit salads are, therefore, often sold immersed in sugar syrups to increase shelf life. Pre-processing short-term hot-water treatments (sHWT) may further extend the shelf life of fresh-cuts by effectively reducing microbial contaminations before cutting. In this study, fresh-cut ‘Braeburn’ apples, a major component of fruit salads, were short-term (30 s) hot water-treated (55 °C or 65 °C), partially treated with a commercial anti-browning solution (ascorbic/citric acid) after cutting and, thereafter, stored immersed in sugar syrup. To, for the first time, comprehensively and comparatively evaluate the currently unexplored positive or negative effects of these treatments on fruit quality and shelf life, relevant parameters were analyzed at defined intervals during storage at 4 °C for up to 13 days. Compared to acid pre-treated controls, sHWT significantly reduced the microbial loads of apple slices but did not affect their quality during the 5 day-standard shelf life period of fresh-cuts. Yeasts were most critical for shelf life of fresh-cut apples immersed in sugar syrup. The combination of sHWT and post-processing acid treatment did not further improve quality or extend shelf life. Although sHWT could not extend potential maximum shelf life beyond 10 d, results highlighted the potentials of this technique to replace pre-processing chemical treatments and, thus, to save valuable resources.


Sign in / Sign up

Export Citation Format

Share Document