scholarly journals Cost-Effective Inspection of Rebar Spacing and Clearance Using RGB-D Sensors

2021 ◽  
Vol 13 (22) ◽  
pp. 12509
Author(s):  
Xinxing Yuan ◽  
Fernando Moreu ◽  
Maryam Hojati

The quality assurance of constructing reinforced concrete (RC) structures in compliance with their design plays a key role in the durability, serviceability, and sustainability of the built RC elements. One area of concern in the quality control of constructing RC structures is examining the position and dimension of the rebars before pouring fresh concrete. Currently, this is accomplished by visual inspection and individually by hand with limited time available between construction stages. Over the past decades, structural health and monitoring during the construction period has applied remote sensing technologies. However, little research has focused on the use of such technologies to inspect and evaluate rebar placement prior to concrete pouring as quality control. In this study we develop an algorithm that facilitates inspecting the positions of rebars and the cover of concrete using a new-generation low-cost RGB-D sensor to find incorrect rebar placement. The proposed method is evaluated using a typical 5 × 5 two-layer rebar cage in the laboratory by comparing the proposed technique with traditional inspection methods. The results show that the RGB-D sensor can achieve cost-effective inspection for rebar spacing and clearance with an acceptable tolerance. The evaluation of rebar spacing results shows that the maximum standard deviation for rebar spacing is 0.34 inch (8.64 mm) between longitudinal rebar 2 and 3, which is the same as the rebar construction and traditional tape measurement results. The concrete cover estimation results show that the maximum standard deviation for rebar cage concrete cover is 0.19 inch (4.83 mm) for longitudinal rebar 3. The issues of new RGB-D sensor scan settings and the test results will be helpful for practitioners in improving construction quality.

Nukleonika ◽  
2016 ◽  
Vol 61 (2) ◽  
pp. 207-212 ◽  
Author(s):  
Irina V. Litovko ◽  
Alexy A. Goncharov ◽  
Andrew N. Dobrovolskiy ◽  
Lily V. Naiko ◽  
Irina V. Naiko

Abstract The paper presents new generation plasma optical devices based on the electrostatic plasma lens configuration that opens a novel attractive possibility for effective high-tech practical applications. Original approaches to use of plasma accelerators with closed electron drift and open walls for the creation of a cost-effective low-maintenance plasma lens with positive space charge and possible application for low-cost, low-energy rocket engine are described. The preliminary experimental, theoretical and simulation results are presented. It is noted that the presented plasma devices are attractive for many different applications in the state-of-the-art vacuum-plasma processing.


2015 ◽  
Author(s):  
Michael A. Cianfrocco ◽  
Andres E. Leschziner

The advent of a new generation of electron microscopes and direct electron detectors has realized the potential of single particle cryo-electron microscopy (cryo-EM) as a technique to generate high-resolution structures. However, calculating these structures requires high performance computing clusters, a resource that may be limiting to many likely cryo-EM users. To address this limitation and facilitate the spread of cryo-EM, we developed a publicly available ‘off-the-shelf’ computing environment on Amazon’s elastic cloud computing infrastructure. This environment provides users with single particle cryo-EM software packages and the ability to create computing clusters that can range in size from 16 to 480+ CPUs. Importantly, these computing clusters are also cost-effective, as we illustrate here by determining a near-atomic resolution structure of the 80S yeast ribosome for $28.89 USD in ~10 hours.


Author(s):  
Marta Poblet

  The unparalleled success of mobile technologies, the emergence of new modes of software and hardware production, and the free circulation of shared knowledge in the Web 2.0 have enabled a new generation of bottom-up, community-based, cost-effective telecommunications initiatives and projects. While these endeavours find their roots in previous hobbyists’ movements (i.e. amateur radio, software hackers, do-it-yourself communities) today's’ initiatives are able to connect, co-produce and share knowledge with world-wide communities, engaging new participants both at the local and the global level. This article reviews recent developments that aim to provide free or low-cost access to telecommunication services in different areas. From Do-It-Yourself (DIY) satellites to mesh networks, these projects tap into the wisdom and resources of communities to offer non-commercial alternatives to present telecommunications services. The technology, organisational, and regulatory challenges they also face cannot be underestimated either. However, in their struggle to find and consolidate new markets, affordable telecommunications reveal that a new digital economy based on co-production could be under way.  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Arnaud Comlan Gouda ◽  
Marilyn L. Warburton ◽  
Gustave L. Djedatin ◽  
Sèdjro Bienvenu Kpeki ◽  
Peterson W. Wambugu ◽  
...  

AbstractMorphological identification of closely related rice species, particularly those in the Oryza AA genome group, presents major challenges and often results in cases of misidentification. Recent work by this group identified diagnostic single nucleotide polymorphic (SNP) markers specific for several rice species and subspecies based on DArTseq next-generation sequencing technology (“DArTseq”). These SNPs can be used for quality control (QC) analysis in rice breeding and germplasm maintenance programs. Here, we present the DArTseq-based diagnostic SNPs converted into Kompetitive allele-specific PCR (KASPar or KASP) assays and validation data for a subset of them; these can be used for low-cost routine genotyping quality control (QC) analysis. Of the 224 species/subspecies’ diagnostic SNPs tested, 158 of them produced working KASP assays, a conversion success rate of 70%. Two validation experiments were run with 87 of the 158 SNP markers to ensure that the assays amplified, were polymorphic, and distinguished the five species/subspecies tested. Based on these validation test results, we recommend a panel of 36 SNP markers that clearly delineate O. barthii, O. glaberrima, O. longistaminata, O. sativa spp. indica and japonica. The KASP assays provide a flexible, rapid turnaround and cost-effective tool to facilitate germplasm curation and management of these four Oryza AA genome species across multiple genebanks.


Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 825 ◽  
Author(s):  
Vicente Torres-Costa ◽  
Ermei Mäkilä ◽  
Sari Granroth ◽  
Edwin Kukk ◽  
Jarno Salonen

Memristors are two terminal electronic components whose conductance depends on the amount of charge that has flown across them over time. This dependence can be gradual, such as in synaptic memristors, or abrupt, as in resistive switching memristors. Either of these memory effects are very promising for the development of a whole new generation of electronic devices. For the successful implementation of practical memristors, however, the development of low cost industry compatible memristive materials is required. Here the memristive properties of differently processed porous silicon structures are presented, which are suitable for different applications. Electrical characterization and SPICE simulations show that laser-carbonized porous silicon shows a strong synaptic memristive behavior influenced by defect diffusion, while wet-oxidized porous silicon has strong resistance switching properties, with switching ratios over 8000. Results show that practical memristors of either type can be achieved with porous silicon whose memristive properties can be adjusted by the proper material processing. Thus, porous silicon may play an important role for the successful realization of practical memristorics with cost-effective materials and processes.


Electronics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Shanwen Hu ◽  
Yunqing Hu ◽  
Haiyu Zheng ◽  
Weiguang Zhu ◽  
Yiting Gao ◽  
...  

In the RF (Radio Frequency) front-end of a communication system, bandpass filters (BPFs) are used to send passband signals and reject stopband signals. Substrate-integrated waveguides (SIW) are widely used in RF filter designs due to their low loss and low cost and the flexibility of their integration properties. However, SIW filters under 6 GHz are still too large to meet the requirement of portable communication devices due to their long wavelength. In this paper, a very compact fully integrated SIW filter is proposed and designed with RT6010 dielectric material to meet the small size requirement of portable devices for next-generation sub-6 G applications. The proposed filter contains two sawtooth-shaped composite right-/left-handed (CRLH) resonator units, instead of traditional rectangular-shaped CRLH resonator units, which makes the filter more compact and cost effective. The filter is designed and fabricated on an RT6010 substrate, with a size of only 10 mm × 7.4 mm. The measurement results illustrated that the proposed BPF shows a passband covering the frequency range of 3.25–3.45 GHz; the minimum passband insertion loss is only 2.4 dB; the stopband rejection is better than −20 dB throughout the frequencies below 3.0 GHz and above 3.8 GHz; S11 is as low as −37 dB at 3.35 GHz; and the group delay variation is only 1.4 ns throughout the operation bandwidth.


Biosensors ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 47 ◽  
Author(s):  
Daniel Martín-Yerga

Innovative methods to achieve the user-friendly, quick, and highly sensitive detection of nanomaterials are urgently needed. Nanomaterials have increased importance in commercial products, and there are concerns about the potential risk that they entail for the environment. In addition, detection of nanomaterials can be a highly valuable tool in many applications, such as biosensing. Electrochemical methods using disposable, low-cost, printed electrodes provide excellent analytical performance for the detection of a wide set of nanomaterials. In this review, the foundations and latest advances of several electrochemical strategies for the detection of nanoparticles using cost-effective printed devices are introduced. These strategies will equip the experimentalist with an extensive toolbox for the detection of nanoparticles of different chemical nature and possible applications ranging from quality control to environmental analysis and biosensing.


1999 ◽  
Vol 572 ◽  
Author(s):  
M. Heuken ◽  
H. Protzmann ◽  
O. Schoen ◽  
M. Luenenbuerger ◽  
H. Juergensen ◽  
...  

ABSTRACTProduction scale MOVPE reactors such as the AIXTRON 2000HT Planetary Reactor® offer unique possibilities to fabricate highly efficient GaN based devices at a low cost of ownership. The scope of this investigation is to understand the dependence of wavelength, thickness and doping uniformity on parameters such as total gas flow, temperature distribution in the reactor and purity of the precursors. Wafer to wafer uniformity in the 7×2” wafer configuration as well as run to run reproducibility will be discussed. We obtained a wafer to wafer standard deviation of 2.7% for the sheet resistance of Si-doped GaN/InGaN/GaN double heterostructures. The wafer to wafer standard deviation of the main PL emission wavelength at 412.3 nm is 1.8 nm. The run to run reproducibility of the main emission wavelength is <3 nm. We obtained reproducible resistivities of GaN:Mg layers of less than 1 Ωcm which corresponds to 5−10×1017cm−3. Statistical data of p-type doping taking 20 runs into account gave an average hole concentration of 5.5×1017cm−3. Together with the wafer to wafer thickness uniformity of <1% the most sensitive layer properties are well controlled to allow a cost-effective mass production process. Structures such as SQW and MQW structures were grown to understand the performance of a production system with respect to interface properties.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6081
Author(s):  
Luigi Vesce ◽  
Maurizio Stefanelli ◽  
Aldo Di Carlo

Among the new generation photovoltaics, perovskite solar cell (PSC) technology reached top efficiencies in a few years. Currently, the main objective to further develop PSCs is related to the fabrication of stable devices with cost-effective materials and reliable fabrication processes to achieve a possible industrialization pathway. In the n-i-p device configuration, the hole transporting material (HTM) used most is the highly doped organic spiro-fluorene-based material (Spiro-OMeTAD). In addition to the high cost related to its complex synthesis, this material has different issues such as poor photo, thermal and moisture stability. Here, we test on small and large area PSCs a commercially available HTM (X55, Dyenamo) with a new core made by low-cost fluorene–xantene units. The one-pot synthesis of this compound reduces 30 times its cost with respect to Spiro-OMeTAD. The optoelectronic performances and properties are characterized through JV measurement, IPCE (incident photon to current efficiency), steady-state photoluminescence and ISOS stability test. SEM (scanning electron microscope) images reveal a uniform and pinhole free coverage of the X55 HTM surface, which reduces the charge recombination losses and improves the device performance relative to Spiro-OMeTAD from 16% to 17%. The ISOS-D-1 stability test on large area cells without any encapsulation reports an efficiency drop of about 15% after 1000 h compared to 30% for the reference case.


2021 ◽  
Vol 7 (2) ◽  
pp. 586-589
Author(s):  
Nana Schlage ◽  
Andreas Kitzig ◽  
Gudrun Stockmanns ◽  
Edwin Naroska

Abstract Many people are familiar with the feeling of instability, pain, or subsidence in the knee joint after a knee injury. There are many different methods for examining the knee, such as the drawer test or the Lachman test [1], before and after surgery. While these tests can be used in short term and provide useful results, motion capture systems can be used as an alternative measurement method, almost as a substitute in longer term. These include marker-based or mechanica l systems, which achieve good measurement results but are expensive and inflexible. For this reason, this paper presents a mobile, easy-to-use motion and easy expandable capture system using a low-cost IMU-based development system. The modular design of the system allows it to be adapted to each body region with simple adjustments. However, the present work focuses on applications for capturing human motion sequences and deriving three joint angles of the lower extremities to detect malposition.


Sign in / Sign up

Export Citation Format

Share Document