scholarly journals Raising Climate-Resilient Embolden Rice (Oryza sativa L.) Seedlings during the Cool Season through Various Types of Nursery Bed Management

2021 ◽  
Vol 13 (22) ◽  
pp. 12910
Author(s):  
Mousumi Mondal ◽  
Benukar Biswas ◽  
Sourav Garai ◽  
Saju Adhikary ◽  
Prasanta Kumar Bandyopadhyay ◽  
...  

Facing cold stress is amajor constraint in seedling production during the winter season as, most particularly in recent times due to uncertain climatic conditions, no sustainable technology has been reported that could be easily adopted by farmers withlimited resources. Therefore, field experiments were carried out during winter 2017–2018 and 2018–2019 at the Central Research Farm of Bidhan Chandra KrishiViswavidyalaya, West Bengal, India to study the growth, survival potential, yield and nutritional and biochemical properties of boro rice seedlings as influenced by two seedbed management practices viz. conventional seedbed (farmers’ practice) and improved seedbed (polythene protected with micronutrient supplementation). The major objective was to lower the nurserybed duration without compromising seedlings’ health and to studythe economic viability during the winter season. The experiment was laid out in ten experimental units and deployed anindependent-sample t-test to compare the performance of the seedlings. The microclimatic changes were also itemized from both seedbeds. The seeds sownunder improved nursery conditions resulted in better seedling emergence (~90%) and survival percentage (~85%) as compared to the conventional seedbed (~70% and 65%). Growth attributes in terms of plant height, biomass accumulation, root characteristics, tiller count, and growth rate were observed to be better from the polythene-protected nursery bed. Theimproved nursery bed accounted for 20% higher seedling count at the time of transplantation over the conventional bed. The microclimatic situation under a polythene covering was also favorable for germination and seedling growth. Maximum nutrient (N, P, and K) concentrations, as well as chlorophyll content, wererecorded from improved seedlings. Results suggested that the improved seedbed management was apotential alternative toearly embolden seedling production during the winter to avoid climatic abnormalities. Most importantly, improved seedbeds ensured a comprehensive route from germination to healthy seedling production without any failure in thesmalltime window, which involvedless input as well as cost involvement. This technique could diffusethe problem oflate sowing conditions in the rice–rice cropping system.

2019 ◽  
Vol 3 (1) ◽  
pp. 81
Author(s):  
Saroj Thapa ◽  
Khagendra Thapa ◽  
Jiban Shrestha ◽  
Amit Chaudhary

Rice (Oryza sativa L.) is first staple crop of Nepal. The national average yield of rice is less than its potential yield, for which poor agronomic management has been reported as the critical factor. Among various agro-management practices seedling age, seeding density and nitrogen rates significantly affect the growth and yield of rice. The lower seeding density produces the taller plant, more effective tiller, lower sterility and higher grain yield. On the other hand, seedling of older age from higher seeding density gives the lowest yield. Transplanting younger seedling with low seeding density and application of recommended dose of nitrogen gives a higher yield. This article summarizes various effects of seedling age, seeding density and nitrogen rates on plant height, number of effective tillers, number of filled grains, thousand grain weight and grain yield of rice. This information may be useful for maize growers and researchers.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1155
Author(s):  
Amanullah ◽  
Inamullah ◽  
Mona S. Alwahibi ◽  
Mohamed Soliman Elshikh ◽  
Jawaher Alkahtani ◽  
...  

Continuous cropping of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) deplete soil fertility and reduce crop productivity as well as zinc (Zn) concentrations in rice grains and straw. Low Zn concentrations in rice grains have a negative impact on human health, while low Zn concertation in rice straw creates a nutritional problem for animals. The current high yielding rice varieties and hybrids remove large quantities of Zn from the soils, lowering the residual concentrations of soil Zn for the subsequent crop (e.g., wheat). Field experiments were conducted on farmers field in Malakand with the objective to evaluate the impact of various combinations of phosphorus (0, 40, 80, and 120 kg ha−1) and Zn levels (0, 5, 10, and 15 kg ha−1) on biofortification of Zn in grains and straw of rice genotypes [fine (Bamati-385) vs. coarse (Fakhre-e-Malakand and Pukhraj)]. The results revealed that Zn biofortification in rice genotypes increased with the integrated use of both nutrients (P + Zn) when applied at higher rates (80 and 120 kg P ha−1, and 10 and 15 kg Zn ha−1, respectively). The biofortification of Zn in both grains and straw was higher in the coarse than fine rice genotypes (Pukhraj > Fakhre-e-Malakand > Basmati-385). It was concluded from this study that the application of higher P and Zn levels increased Zn contents in rice parts (grains and straw) under the rice-wheat system. We also concluded from this study that Zn concentrations in rice grains and straw are influenced by plant genetic factors and Zn management practices.


OENO One ◽  
2003 ◽  
Vol 37 (1) ◽  
pp. 1
Author(s):  
T. Telebak ◽  
Yvon Jolivet ◽  
Jean-Marie Dubois

<p style="text-align: justify;">In Quebec, winter frost is one of the determining factors influencing vine survival and yield. To evaluate the quality of the different types of winter protection, ground temperature data under different covers (ground knolls, leaf mounds, carried over snow and natural snow) and ambient air temperatures were recorded. Results show that the Seyval blanc, if not protected against winter frost, can sustain quite serious damages when the air temperature reaches -30 °C. Ridging, leaf covering and the natural snow cover as well as carried over snow have a positive effect on ground temperatures, since over the site without protection, frost penetrated down to a depth of 50 cm. However, it seems that the root System did not sustain significant damages from the ground frost since regrowth occurred in the Spring. Because of its direct exposure to radiation and surface climatic conditions, bare soil warms up more quickly in the Spring compared to the other sites benefiting from protection. Results also indicate that the mortality rate of the vine stock fruit buds without protection is nearly 100 % compared to the protected vine stocks with a fruit bud mortality rate varying from 22.5 to 35.8 %. The protected vine stocks, regardless of the type of protection used, had satislactory yields from 7.2 t/ha to 24.4 t/ha. On the other hand, the raisin yield of the vine stocks without any winter protection is null. The best raisin yields were obtained over sites where vine stocks were protected by ridging (40 cm of earth), while the vine stocks protected by leaf covering showed an average yield. We also observed that when vine stock leaf covering is coupled with lodged vine shoots, raisin yields are higher than when the vine shoots are erect. However, in both cases, potential yield per hectare is satisfactory. Hence, the lodging of vine shoots becomes a useless operation. The vine stocks protected by natural snow as well as by leaf covering (30 cm + carried over snow and lodged vine shoots) gave the fruit with the highest sugar content. Snow is also an excellent insulator because a 37 cm high snow cover permitted the survival of the vine stocks protected by snow even when the temperature reached -30 °C. The only problem still posing a threat is snow cover variability during the winter season. A reduced snow cover, coupled with temperature conditions under the threshold of tolerance of the vine to cold, could not insure satisfactory protection ol the fruit buds.</p>


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 579
Author(s):  
Gustavo Castilho Beruski ◽  
Luis Miguel Schiebelbein ◽  
André Belmont Pereira

The potential yield of annual crops is affected by management practices and water and energy availabilities throughout the crop season. The current work aimed to assess the effects of plant population, planting dates and soil covering on yield components of maize. Field experiments were carried out during the 2014–2015 and 2015–2016 growing seasons at areas grown with oat straw, voluntary plants and bare soil, considering five plant populations (40,000, 60,000, 80,000, 100,000 and 120,000 plants ha−1) and three sowing dates (15 September, 30 October and 15 December) for the hybrid P30F53YH in Ponta Grossa, State of Paraná, Brazil. Non-impacts of soil covering or plant population on plant height at the flowering phenological stage were observed. Significant effects of soil covering on yield components and final yield responses throughout the 2014–2015 season were detected. An influence of plant populations on yield components was evidenced, suggesting that, from 80,000 plants ha−1, the P30F53YH hybrid performs a compensatory effect among assessed yield components in such a way as to not compromise productivity insofar as the plant population increases up to 120,000 plants ha−1. It was noticed, a positive trend of yield components and crop final yield as a function of plant density increments.


Author(s):  
Gustavo Castilho Beruski ◽  
Luis Miguel Schiebelbein ◽  
André Belmont Pereira

The potential yield of annual crops is affected by management practices and water and energy availabilities throughout the crop season. The current work aimed to assess the effects of plant population and soil covering on yield components of maize. Field experiments were carried out during 2014-15 and 2015-16 growing seasons at areas grown with oat straw, voluntary plants and bare soil, considering five different plant populations (40,000, 60,000, 80,000, 100,000 and 120,000 plants ha-1) and three sowing dates (15 Sep., 30 Oct., 15 Dec.) for the hybrid P30F53YH in Ponta Grossa, State of Parana, Brazil. Non-impacts of soil covering or plant population on plant height at the flowering phenological stage were observed. Significant effects of soil covering on crop physiological and yield components responses throughout the 2014-15 season were detected. Influence of plant populations on yield components was evidenced, suggesting that from 80,000 plants ha-1 the P30F53YH hybrid performs a compensatory effect among assessed yield components in such a way as to not compromise productivity insofar as plant population increases up to 120,000 plants ha-1. It was noticed a positive trend of yield components and crop final yield as a function of plant density increments.


2020 ◽  
Author(s):  
Ram Prakash Yadav ◽  
Suresh Chandra Panday ◽  
Jitendra Kumar ◽  
Jaideep Kumar Bisht ◽  
Vijay Singh Meena ◽  
...  

Climate is most important factor affecting agriculture, and issues related to climate and its implications have attracted attention of policy makers globally. The farm sector, particularly marginal ecosystems in mountains are vulnerable because of unpredictable variation and severe sink limitations. Efforts to impart resilience to farm and its allied sector are an urgent need. The climatic parameters play very important role to determine type of crops, cattle rearing and the life style adopted by the people. Moreover, weather has a significant impact on crop growth and development. Weather plays a vital role and affects the production and productivity of the crops. According to an estimate, weather contributes 67% variation in productivity and rest of the factors (soil, nutrient and management practices etc.) accounts for 33%. Therefore, there is a need of in-depth analysis of each meteorological parameters and identification of their trend over the years in order to identify and adapt suitable agriculture practices, better adaptable crops, varieties and their duration, time of field preparation, sowing time and irrigation as per the climatic conditions of the region. This will lead farming community to plan strategies of agriculture operation to obtain optimum yield. The climatic data from the meteorological observatory of ICAR-VPKAS, Hawalbagh located at mid hill condition (1250 m amsl) were analyzed for different periods (annual, seasonal, monthly, weekly). It was revealed that rainfall is decreasing over the years but significant (P < 0.05) decrease was recorded at mid hills. The maximum temperature is increasing significantly (P < 0.05) during post-monsoon and winter season however decreasing in monsoon season whereas minimum temperature is decreasing round the year. These changes in rainfall and temperatures are affecting production and productivity of the crops, as hills are largely rainfed. In terms of crop water demand, there is no need to apply irrigation during the rainy season except the transplanted rice. However, during the winter season as there is more than 60% of water deficit to irrigate the crops. The proper understanding of climate is necessary to bring sustainability in hill agriculture by adjusting crop sowing window and other operations as per suitability of the climate.


1978 ◽  
Vol 58 (2) ◽  
pp. 449-458
Author(s):  
A. R. PESANT ◽  
R. BOLDUC ◽  
R. DRAPEAU

A comparative study conducted for the winters of 1973–74 and 1974–75 in three zones of the Province of Quebec permitted us to point out the principal climatic and edaphic factors in the winterkilling of alfalfa fields. Alfalfa plants were sampled on 21 different location–years in order to measure their potential yield index (IRP) and the heaving index (ID) of the tap root. Climatic conditions were suitable for the survival during the winter of 1974–75. Yet, during the winter of 1973–74, alternate freezing and thawing, rainfall and the lack of snow cover gave significant differences between the three zones. The IRP increased from the South (zone I) to the North (zone III) of the province. Partial correlations analysis emphasized the importance of rainfall on soil water (r = 0.58) and on snow depth (r = 0.79). Stepwise regression analysis showed that the change in soil water content during the winter was the variable which had the greatest impact on the IRP and the ID. These field experiments suggest the development, on a national basis, of an agrometeorological and statistical survey system to assess alfalfa crop injury and to recognize regional differences.


Author(s):  
M. Mokidul Islam ◽  
Durga Charan Kalita

A field experiment was conducted at farmers’ field in West Garo Hills district of Meghalaya, India during kharif 2010 and 2011 to study the root characteristics of rice under different establishment methods and integrated weed management practices. Results revealed that the length, volume and biomass of roots were higher in SRI method followed by ICM method than CRC system at physiological maturity stage during both the years of investigation. Hand weeding twice at 20 and 40 DAT followed by butachlor 50 [email protected] kg a.i.ha-1 at 3 DAT + mechanical weeding at 20 DAT recorded higher root parameters over unweeded control during both years of field study. Maximum grain yield of rice was recorded with SRI method of establishment followed by ICM. Among the weed management practices, hand weeding twice at 20 DAT and 40 DAT recorded significantly higher grain yield closely followed by butachlor [email protected] kg a.i. ha-1 at 3 DAT + one mechanical weeding at 20 DAT. The higher net profit and B:C ratio under SRI establishment method of wetland rice could be obtained with butachlor 50 [email protected] kg a.i. ha-1 at 3 DAT + mechanical weeding at 20 DAT followed by hand weeding twice at 20 and 40 DAT. In ICM higher grain yield was recorded with hand weeding twice at 20 and 40 DAT.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Dinesh Kumar Singh ◽  
Purushottam Kumar ◽  
A. K. Bhardwaj

Rice (Oryza sativa L.)-wheat (Triticum aestivum L. emend. Fiori and Paol.) is the most important two crops a year intensive rice based cropping system of Asia. Agronomic management is the most important input for getting potential yield and high net returns in any crop or crop sequence. Most of the farmers used to grow old varieties of rice and wheat without any row arrangement. Fertilization is mainly limited to nitrogenous fertilizer only. Therefore, the present study was undertaken to find out the effect of different agronomic management practices on productivity and economics of rice-wheat system at farmers’ fields. Inclusion of improved variety in rice and wheat incurred additional cost of $52/ha and provided additional return of $101/ha, whereas sowing/transplanting of rice and wheat in lines incurred additional cost of $30/ha and resulted in additional returns of $146/ha. Balanced fertilization incurred additional cost of $38 over the imbalanced fertilization and provided additional returns of $180/ha. Recommended package of practices (improved variety, line sowing/transplanting and balanced fertilization) incurred additional cost of cultivation of $120/ha over the farmers’ practice and achieved additional net returns of $426/ha.


2022 ◽  
Vol 12 ◽  
Author(s):  
Alejandro del Pozo ◽  
Claudio Jobet ◽  
Iván Matus ◽  
Ana María Méndez-Espinoza ◽  
Miguel Garriga ◽  
...  

Both the temperate-humid zone and the southern part of the Mediterranean climate region of Chile are characterized by high wheat productivity. Study objectives were to analyze the yield potential, yield progress, and genetic progress of the winter bread wheat (Triticum aestivum L.) cultivars and changes in agronomic and morphophysiological traits during the past 60 years. Thus, two field experiments: (a) yield potential and (b) yield genetic progress trials were conducted in high-yielding environments of central-southern Chile during the 2018/2019 and 2019/2020 seasons. In addition, yield progress was analyzed using yield historical data of a high-yielding environment from 1957 to 2017. Potential yield trials showed that, at the most favorable sites, grain yield reached ∼20.46 Mg ha–1. The prolonged growing and grain filling period, mild temperatures in December-January, ample water availability, and favorable soil conditions explain this high-potential yield. Yield progress analysis indicated that average grain yield increased from 2.70 Mg ha–1 in 1959 to 12.90 Mg ha–1 in 2017, with a 128.8 kg ha–1 per-year increase due to favorable soil and climatic conditions. For genetic progress trials, genetic gain in grain yield from 1965 to 2019 was 70.20 kg ha–1 (0.49%) per year, representing around 55% of the yield progress. Results revealed that the genetic gains in grain yield were related to increases in biomass partitioning toward reproductive organs, without significant increases in Shoot DW production. In addition, reducing trends in the NDVI, the fraction of intercepted PAR, the intercepted PAR (form emergence to heading), and the RGB-derived vegetation indices with the year of cultivar release were detected. These decreases could be due to the erectophile leaf habit, which enhanced photosynthetic activity, and thus grain yield increased. Also, senescence of bottom canopy leaves (starting from booting) could be involved by decreasing the ability of spectral and RGB-derived vegetation indices to capture the characteristics of green biomass after the booting stage. Contrary, a positive correlation was detected for intercepted PAR from heading to maturity, which could be due to a stay-green mechanism, supported by the trend of positive correlations of Chlorophyll content with the year of cultivar release.


Sign in / Sign up

Export Citation Format

Share Document