scholarly journals Trans-Activator Binding Site Context in RCNMV Modulates Subgenomic mRNA Transcription

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2252
Author(s):  
Jennifer S. H. Im ◽  
Laura R. Newburn ◽  
Gregory Kent ◽  
K. Andrew White

Many positive-sense RNA viruses transcribe subgenomic (sg) mRNAs during infections that template the translation of a subset of viral proteins. Red clover necrotic mosaic virus (RCNMV) expresses its capsid protein through the transcription of a sg mRNA from RNA1 genome segment. This transcription event is activated by an RNA structure formed by base pairing between a trans-activator (TA) in RNA2 and a trans-activator binding site (TABS) in RNA1. In this study, the impact of the structural context of the TABS in RNA1 on the TA–TABS interaction and sg mRNA transcription was investigated using in vitro and in vivo approaches. The results (i) generated RNA secondary structure models for the TA and TABS, (ii) revealed that the TABS is partially base paired with proximal upstream sequences, which limits TA access, (iii) demonstrated that the aforementioned intra-RNA1 base pairing involving the TABS modulates the TA–TABS interaction in vitro and sg mRNA levels during infections, and (iv) revealed that the TABS in RNA1 can be modified to mediate sg mRNA transcription in a TA-independent manner. These findings advance our understanding of transcriptional regulation in RCNMV and provide novel insights into the origin of the TA–TABS interaction.

1991 ◽  
Vol 11 (7) ◽  
pp. 3642-3651 ◽  
Author(s):  
C Devlin ◽  
K Tice-Baldwin ◽  
D Shore ◽  
K T Arndt

The major in vitro binding activity to the Saccharomyces cerevisiae HIS4 promoter is due to the RAP1 protein. In the absence of GCN4, BAS1, and BAS2, the RAP1 protein binds to the HIS4 promoter in vivo but cannot efficiently stimulate HIS4 transcription. RAP1, which binds adjacently to BAS2 on the HIS4 promoter, is required for BAS1/BAS2-dependent activation of HIS4 basal-level transcription. In addition, the RAP1-binding site overlaps with the single high-affinity HIS4 GCN4-binding site. Even though RAP1 and GCN4 bind competitively in vitro, RAP1 is required in vivo for (i) the normal steady-state levels of GCN4-dependent HIS4 transcription under nonstarvation conditions and (ii) the rapid increase in GCN4-dependent steady-state HIS4 mRNA levels following amino acid starvation. The presence of the RAP1-binding site in the HIS4 promoter causes a dramatic increase in the micrococcal nuclease sensitivity of two adjacent regions within HIS4 chromatin: one region contains the high-affinity GCN4-binding site, and the other region contains the BAS1- and BAS2-binding sites. These results suggest that RAP1 functions at HIS4 by increasing the accessibility of GCN4, BAS1, and BAS2 to their respective binding sites when these sites are present within chromatin.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e14153-e14153
Author(s):  
Edward H. Lin ◽  
Yu Xiazhen ◽  
Xi C He ◽  
Xifeng Wu ◽  
Yang Xie ◽  
...  

e14153 Background: The median survival for patients with unresectable metastatic colorectal cancer (CRC) is ~2 years with modern chemotherapy which yields only 5-10% complete responses (CR) including metastasectomy. Recurrences after CR are very common thanks to presence of dormant CSC that are best targeted by our proposed two-step ADAPT strategy: activate from dormancy and potentiate targeting. We examine this strategy in various CRC models and reviewed the impact on stemess including CD133 mRNA, a circulating CSC marker that predict colon cancer relapse. Methods: Different CRC models (in vitro and in vivo) were interrogated similar to clinical ADAPT treatment protocol using capecitabine (or 5FU) plus celecoxib. We also conducted IRB approved retrospective review of unresectable metastatic CRC patients treated ADAPT therapy and in those who also had PBMC CD133 mRNA measured. Results: Contrary to 5FU, which eliminates proliferating CRC cells via apoptosis but also stimulates stemness, celecoxib preferentially deplete CD133+ colon cells and exert potent stemness inhibition via rapid tumor necrosis by perturbing hypoxia and energy metabolism via CA-IX. Following response to first-line chemotherapy, ADAPT strategy plus radiation improved CR or near CR rate to 49/126 (40%) in unresectable CRC patients whose median survival had reached 92.7 months (95% CI, 53.5 months - not reached). Paradoxically, none surgical CR patients (n= 16) enjoyed 100% 5-year relapse free survival compared to 42% of surgical patients (p = 0.04). The PBMC CD133 mRNA in five long-term CR patients were 0.0024, 0.29, 0.5, 0.56, 2.96 respectively, all below previously reported cutoff value of 4.79 for recurrence and far below CD133 mRNA levels (28, 375, 3997, 15662, 83240) in none CR patients. Conclusions: ADAPT plus radiation preferentially targets colon CSC via hypoxia/CA-IX and improves clinical CR rate and molecular CR as measured by PBMC CD133 mRNA. We are actively interrogating the effects of ADAPT strategies in a phase II study funded by Gateway in CRC patients and in genetic CRC animal models.


2019 ◽  
Vol 77 (16) ◽  
pp. 3231-3244 ◽  
Author(s):  
Maria Pokornowska ◽  
Marek C. Milewski ◽  
Kinga Ciechanowska ◽  
Agnieszka Szczepańska ◽  
Marta Wojnicka ◽  
...  

Abstract The ribonuclease Dicer produces microRNAs (miRNAs) and small interfering RNAs that are handed over to Ago proteins to control gene expression by targeting complementary sequences within transcripts. Interestingly, a growing number of reports have demonstrated that the activity of Dicer may extend beyond the biogenesis of small regulatory RNAs. Among them, a report from our latest studies revealed that human Dicer facilitates base pairing of complementary sequences present in two nucleic acids, thus acting as a nucleic acid annealer. Accordingly, in this manuscript, we address how RNA structure influences the annealing activity of human Dicer. We show that Dicer supports hybridization between a small RNA and a complementary sequence of a longer RNA in vitro, even when both complementary sequences are trapped within secondary structures. Moreover, we show that under applied conditions, human Ago2, a core component of RNA-induced silencing complex, displays very limited annealing activity. Based on the available data from new-generation sequencing experiments regarding the RNA pool bound to Dicer in vivo, we show that multiple Dicer-binding sites within mRNAs also contain miRNA targets. Subsequently, we demonstrate in vitro that Dicer but not Ago2 can anneal miRNA to its target present within mRNA. We hypothesize that not all miRNA duplexes are handed over to Ago proteins. Instead, miRNA-Dicer complexes could target specific sequences within transcripts and either compete or cooperate for binding sites with miRNA-Ago complexes. Thus, not only Ago but also Dicer might be directly involved in the posttranscriptional control of gene expression.


2009 ◽  
Vol 296 (5) ◽  
pp. R1327-R1335 ◽  
Author(s):  
William T. Festuccia ◽  
Pierre-Gilles Blanchard ◽  
Véronique Turcotte ◽  
Mathieu Laplante ◽  
Meltem Sariahmetoglu ◽  
...  

We investigated the mechanisms whereby peroxisome proliferator-activated receptor-γ (PPARγ) agonism affects glucose and lipid metabolism in brown adipose tissue (BAT) by studying the impact of PPARγ activation on BAT glucose uptake and metabolism, lipogenesis, and mRNA levels plus activities of enzymes involved in triacylglycerol (TAG) synthesis. Interscapular BAT of rats treated or not with rosiglitazone (15 mg·kg−1·day−1, 7 days) was evaluated in vivo for glucose uptake and lipogenesis and in vitro for glucose metabolism, gene expression, and activities of glycerolphosphate acyltransferase (GPAT), phosphatidate phosphatase-1 (PAP or lipin-1), and diacylglycerol acyltransferase (DGAT). Rosiglitazone increased BAT mass without affecting whole tissue glucose uptake. BAT glycogen content (−80%), its synthesis from glucose (−50%), and mRNA levels of UDP-glucose pyrophosphorylase (−40%), which generates UDP-linked glucose for glycogen synthesis, were all reduced by rosiglitazone. In contrast, BAT TAG-glycerol synthesis in vivo and glucose incorporation into TAG-glycerol in vitro were stimulated by the agonist along with the activities and mRNA levels of glycerol 3-phosphate-generating phosphoenolpyruvate carboxykinase and glycerokinase. Furthermore, rosiglitazone markedly increased the activities of GPAT and DGAT but not those of lipin-1-mediated PAP-1, enzymes involved in the sequential acylation of glycerol 3-phosphate and TAG synthesis. Because an adequate supply of fatty acids is essential for BAT nonshivering thermogenesis, the enhanced ability of BAT to synthesize TAG under PPARγ activation may constitute an important mechanism by which lipid substrates are stored in preparation for an eventual thermogenic activation.


2001 ◽  
Vol 37 ◽  
pp. S127
Author(s):  
M. Weinmann ◽  
O. Thews ◽  
T. Schröder ◽  
L. Plasswilm ◽  
P. Vaupel

2018 ◽  
Vol 7 (11) ◽  
pp. 1196-1207 ◽  
Author(s):  
Maurício Martins da Silva ◽  
Lueni Lopes Felix Xavier ◽  
Carlos Frederico Lima Gonçalves ◽  
Ana Paula Santos-Silva ◽  
Francisca Diana Paiva-Melo ◽  
...  

Bisphenol A (BPA) is the most common monomer in polycarbonate plastics and an endocrine disruptor. Though some effects of BPA on thyroid hormone (TH) synthesis and action have been described, the impact of this compound on thyroid H2O2 generation remains elusive. H2O2 is a reactive oxygen species (ROS), which could have deleterious effect on thyrocytes if in excess. Therefore, herein we aimed at evaluating the effect of BPA exposition both in vivo and in vitro on H2O2 generation in thyrocytes, besides other essential steps for TH synthesis. Female Wistar rats were treated with vehicle (control) or BPA 40 mg/kg BW for 15 days, by gavage. We then evaluated thyroid iodide uptake, mediated by sodium-iodide symporter (NIS), thyroperoxidase (TPO) and dual oxidase (DOUX) activities (H2O2 generation). Hydrogen peroxide generation was increased, while iodide uptake and TPO activity were reduced by BPA exposition. We have also incubated the rat thyroid cell line PCCL3 with 10−9 M BPA and evaluated Nis and Duox mRNA levels, besides H2O2 generation. Similar to that found in vivo, BPA treatment also led to increased H2O2 generation in PCCL3. Nis mRNA levels were reduced and Duox2 mRNA levels were increased in BPA-exposed cells. To evaluate the importance of oxidative stress on BPA-induced Nis reduction, PCCL3 was treated with BPA in association to N-acetylcysteine, an antioxidant, which reversed the effect of BPA on Nis. Our data suggest that BPA increases ROS production in thyrocytes, what could lead to oxidative damage thus possibly predisposing to thyroid disease.


2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Roman N Rodionov ◽  
Dmitri V Burdin ◽  
Alexey A Kolobov ◽  
Anton V Demyanov ◽  
Alexey A Soshnev ◽  
...  

Introduction: Endogenous methylarginines have been proposed as markers and potentially mediators of cardiovascular diseases. Alanine:glyoxylate aminotransferase 2 (AGXT2) is the only enzyme capable of regulation of plasma levels of all three endogenous methylarginines. It has also been demonstrated that AGXT2 and its alternative substrate beta-aminoisobutyric acid (BAIB) can play an important modulatory role in lipid metabolism. Using bioinformatic analysis we identified a highly conserved putative binding site for the diabetes-associated transcription factor hepatic nuclear factor 4 alpha (HNF4A) in the mammalian AGXT2 promoter region. The aim of this study was to test the hypothesis that HNF4a is the major regulator of AGXT2 expression and activity. Methods and results: We introduced several point mutations in the putative HNF4A binding site and investigated their influence on activity of the murine Agxt2 promoter using luciferase reporter assay. The mutated constructs decreased the activity of the reporter gene by 75% as compared to the native promoter sequence. We showed direct binding of HNF4a to Agxt2 promoter using chromatin immunoprecipitation. We were able to demonstrate that siRNA-mediated knockdown of HNF4a leads to 50% reduction of Agxt2 expression in the murine hepatic cell line Hepa 1-6. In the in-vivo part of the project we showed that liver-specific Hnf4a knockout mice have a 90% reduction in liver Agxt2 mRNA levels, a 85% decrease in liver AGXT2 activity and significantly increased plasma levels of endogenous methylarginines and BAIB. Conclusions: In the current study we showed direct binding of HNF4a to the mammalian AGXT2 promoter region. We also demonstrated using in-vitro and in-vivo approaches that HNF4A is the major regulator of Agxt2 expression and has direct influence on systemic levels of endogenous methylarginines and BAIB. These findings suggest a novel link between NO-mediated impairment of vascular and renal function and lipid metabolism.


2020 ◽  
Vol 21 (22) ◽  
pp. 8541
Author(s):  
Marlena Zyśk ◽  
Piotr Pikul ◽  
Robert Kowalski ◽  
Krzysztof Lewandowski ◽  
Monika Sakowicz-Burkiewicz ◽  
...  

The N-acetylaspartate network begins in neurons with N-acetylaspartate production catalyzed by aspartate N-acetyltransferase from acetyl-CoA and aspartate. Clinical studies reported a significant depletion in N-acetylaspartate brain level in type 1 diabetic patients. The main goal of this study was to establish the impact of either hyperglycemia or oxidative stress on the N-acetylaspartate network. For the in vitro part of the study, embryonic rat primary neurons were treated by using a nitric oxide generator for 24 h followed by 6 days of post-treatment culture, while the neural stem cells were cultured in media with 25–75 mM glucose. For the in vivo part, male adult Wistar rats were injected with streptozotocin (65 mg/kg body weight, ip) to induce hyperglycemia (diabetes model) and euthanized 2 or 8 weeks later. Finally, the biochemical profile, NAT8L protein/Nat8l mRNA levels and enzymatic activity were analyzed. Ongoing oxidative stress processes significantly affected energy metabolism and cholinergic neurotransmission. However, the applied factors did not affect the N-acetylaspartate network. This study shows that reduced N-acetylaspartate level in type 1 diabetes is not related to oxidative stress and that does not trigger N-acetylaspartate network fragility. To reveal why N-acetylaspartate is reduced in this pathology, other processes should be considered.


2010 ◽  
Vol 298 (6) ◽  
pp. L804-L818 ◽  
Author(s):  
Michel Fausther ◽  
Julie Pelletier ◽  
Carla M. Ribeiro ◽  
Jean Sévigny ◽  
Maryse Picher

Airway defenses are regulated by a complex purinergic signaling network located on the epithelial surfaces, where ATP stimulates the clearance of mucin and pathogens. The present study shows that the obstructive disease cystic fibrosis (CF) affects the activity, expression, and tissue distribution of two ectonucleotidases found critical for the regulation of ATP on airway surfaces: NTPDase1 and NTPDase3. Functional polarities and mRNA expression levels were determined on primary cultures of human bronchial epithelial (HBE) cells from healthy donors and CF patients. The in vitro model of the disease was completed by exposing CF HBE cultures for 4 days to supernatant of the mucopurulent material (SMM) collected from the airways of CF patients. We report that NTPDase1 and NTPDase3 are coexpressed on HBE cultures, where they regulate physiological and excess nucleotide concentrations, respectively. In aseptic conditions, CF epithelia exhibit >50% lower NTPDase1 activity, protein, and mRNA levels than normal epithelia, whereas these parameters are threefold higher for NTPDase3. Exposure to SMM induced opposite polarity shifts of the two NTPDases on both normal and CF epithelia, apical NTPDase1 being mobilized to basolateral surfaces and bilateral NTPDase3 to the apical surface. Their immunolocalization in human tissue revealed that NTPDase1 is expressed in epithelial, inflammatory, and endothelial cells, whereas NTPDase3 is restricted to epithelial cells. Furthermore, the SMM-exposed CF HBE cultures reproduced the impact of the disease on their in vivo distribution. This study provides evidence that an extensive remodeling of the enzymatic network regulating clearance occurs in the airways of CF patients.


2007 ◽  
Vol 292 (3) ◽  
pp. E891-E899 ◽  
Author(s):  
Raul M. Luque ◽  
Zhi H. Huang ◽  
Bhumik Shah ◽  
Theodore Mazzone ◽  
Rhonda D. Kineman

Leptin-deficient obese mice ( ob/ob) have decreased circulating growth hormone (GH) and pituitary GH and ghrelin receptor (GHS-R) mRNA levels, whereas hypothalamic GH-releasing hormone (GHRH) and somatostatin (SST) expression do not differ from lean controls. Given the fact that GH is suppressed in diet-induced obesity (a state of hyperleptinemia), it remains to be determined whether the absence of leptin contributes to changes in the GH axis of ob/ob mice. Therefore, to study the impact of leptin replacement on the hypothalamic-pituitary GH axis of ob/ob mice, leptin was infused for 7 days (sc), resulting in circulating leptin levels that were similar to wild-type controls (∼1 ng/ml). Leptin treatment reduced food intake, body weight, and circulating insulin while elevating circulating n-octanoyl ghrelin concentrations. Leptin treatment did not alter hypothalamic GHRH, SST, or GHS-R mRNA levels compared with vehicle-treated controls. However, leptin significantly increased pituitary GH and GHRH-R expression and tended to enhance circulating GH levels, but this latter effect did not reach statistical significance. In vitro, leptin (1 ng/ml, 24 h) did not affect pituitary GH, GHRH-R, or GHS-R mRNA but did enhance GH release. The in vivo effects of leptin on circulating hormone and pituitary mRNA levels were not replicated by pair feeding ob/ob mice to match the food intake of leptin-treated mice. However, leptin did prevent the fall in hypothalamic GHRH mRNA and circulating IGF-I levels observed in pair-fed mice. These results demonstrate that leptin replacement has positive effects on multiple levels of GH axis function in ob/ob mice.


Sign in / Sign up

Export Citation Format

Share Document