scholarly journals Adsorptive Removal of Arsenic by Mesoporous Iron Oxide in Aquatic Systems

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3147
Author(s):  
Jiyeol Bae ◽  
Suho Kim ◽  
Kwang Soo Kim ◽  
Hwan-Kook Hwang ◽  
Heechul Choi

In an effort to explore the potential for the removal of arsenic from water, mesoporous iron oxide (MI) was prepared using a sonochemical method. The surface area and average pore size of the MI sample were determined using a Brunauer Emmett Teller (BET) analysis to be 269 m2/g and 6.9 nm, respectively. Kinetic experiments revealed that more than 90% of the As(III) and As(V) were adsorbed onto the MI sample within 5 min at 0.1 g/L of MI dosage. The Langmuir equation model suited As(V), whereas As(III) related better to the Freundlich equation model due to different adsorption mechanisms. The predominant mechanism of As(V) adsorption onto MI is thought to be the electrostatic force between As(V) and MI, whereas As(III) in the solution bound to the adsorbed As(III) on the MI in a way consistent with van der Waals attraction. The removal rate of As(III) and As(V) has the highest adsorption efficiency in the pH 5–9 range. The adsorption of As(III) and As(V) was little affected by ionic strength, however the presence of H4SiO40 and PO43− significantly reduced the arsenic adsorption capacity. Furthermore, the adsorption and regeneration efficiency of MI was maintained at around 100% for given adsorption–regeneration cycles.

2011 ◽  
Vol 393-395 ◽  
pp. 1177-1180
Author(s):  
Mei Yang ◽  
Ben Ou ◽  
Li Jun Yan

The honeycomb cordierite, loaded with carrier TiO2 by atmospheric pressure chemical vapor deposition (APCVD), was to produce the V2O5-WO3/TiO2 catalyst by impregnation process. The paper presents the effect of the content of V2O5 and WO3 on the catalyst by analyzing the microstructure and ingredients of catalyst by means of SEM, BET, XRD and EDS. The results show that the BET of the catalyst composed by 2.1%V2O5-8.2%WO3/TiO2 is 854.33m²•g-1 , Its hole area is 73.56 m2•g-1, the average pore size is 9.8nm,the main phase is Mg2Al4Si5O18,anatase-TiO2 and WO3.The distribution of vanadium monomer on the carrier TiO2 prepared by APCVD is monolayer, and minim particle is acicular. The NO removal rate (ηNO/%) of the catalyst with 2.1%V2O5 and 8.2%WO3 achieves 98.9%.


2019 ◽  
Vol 79 (12) ◽  
pp. 2378-2386 ◽  
Author(s):  
H. F. Wu ◽  
J. P. Wang ◽  
E. G. Duan ◽  
Y. F. Feng ◽  
Z. Y. Wan ◽  
...  

Abstract Alum sludge is the sludge discharged from a sedimentation tank in a drinking water treatment plant when polymerized with poly-aluminum chloride (PAC). In this paper, granular alum sludge adsorbent (GASA) was manufactured using powdery alum sludge (PAS) as the raw material and methods such as gluing and pore-forming. The effects of different binders, pore-forming agents, roasting temperatures, and roasting times on the formation of GASA and its dephosphorization performance were investigated. Results showed that the optimum binder was AlCl3 at a mass ratio of 8%, and the best pore-forming agent was starch at a 4% dosage ratio. Meanwhile, the optimum roasting temperature and time were 500 °C and 2 hours, respectively. The specific surface area of GASA was 23.124 m2/g. Scanning electron microscopy suggested that GASA's surface became rough, particles became tight, and average pore size increased, with additional pore channels. P adsorption by GASA reached 0.90 mg/g. The effluent phosphorus concentration of actual tail water decreased to 0.49 mg/L and the removal rate reached 73.5% when the GASA dosage was 20 g/L. The findings of this study are important for the further development of a low-cost adsorbent material for P removal in the future.


2020 ◽  
Vol 158 ◽  
pp. 04005
Author(s):  
Sunyu Jung ◽  
Soon-Ho Park

Fe2O3 is an especially promising material for water purification as it shows high heavy metal adsorption capacity. However, the high cost of commercial Fe2O3 makes it difficult to be widely used in developing countries. Herein, we probe the heavy metal removal performance of iron oxide rust. Rust was grown on iron nails in a controlled manner using peracetic acid (CH3CO3H), a safe and environment-friendly oxidizer. Arsenic was selected as an example of a heavy metal contaminant in this study. XRD and EDS analysis revealed that the iron oxide prepared with peracetic acid was nearly amorphous Fe2O3. Amorphous iron oxide is reported to show higher reactivity than crystalline iron oxide. The BET specific surface area of prepared Fe2O3 is 71 m2/g, which is larger than that of commercial Fe2O3, and the average pore diameter is 73 Å. Oxidized nails are highly effective for removing heavy metals: about 90% of 1ppm arsenic in water was removed at the residence time of 20 minutes, and the removal rate of 90% is maintained after 10 back-to-back arsenic removal experiments at the same residence time. Iron oxide prepared in this study can remove, per 1 cm2, up to 0.114 mg of arsenic.


2019 ◽  
Vol 15 (2) ◽  
pp. 71-78
Author(s):  
Bivek Karki ◽  
Pragya Pandey ◽  
Rinita Rajbhandari ◽  
Sahira Joshi ◽  
Agni Raj Koirala ◽  
...  

Porous activated carbon (AC) and magnetic iron oxide nanoparticles (NPs) are widely used for the removal of arsenic from water body. Fabrication of composite material of iron oxide NPs on the surface of porous AC can further enhance this activity for commercial application. In this research, a magnetic AC composite for arsenic adsorption was prepared by facile hydrothermal treatment of aqueous solution containing activated carbon obtained from lapsi seed stone, iron(II) chloride, polyvinylpyrrolidone (PVP) and ethanol. Several analytical techniques such as scanning electron microscopy (SEM), energy dispersive x-ray (EDX), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirmed the formation of magnetite (Fe3O4) nanoparticles on the surface of porous AC. The prepared materials were accessed for their arsenic adsorption capacity using arsenic (III) trioxide solution and found that composite Fe2O3/AC can remove the arsenic from water far more effectively than activated carbon alone. For 0.5 g/ltr loading of composite sample with contract time of 5 hours, the arsenic content was significantly reduced, which shows that as-fabricated composite can be used potentially for water treatment.


2021 ◽  
Vol 11 (19) ◽  
pp. 8899
Author(s):  
Assia Nait-Merzoug ◽  
Ouanassa Guellati ◽  
Salma Djaber ◽  
Naima Habib ◽  
Aicha Harat ◽  
...  

A membranous shaped Ni/Zn layered double hydroxide based nanohybrid was obtained using a low-cost template-free hydrothermal process at optimized growth conditions of 180 °C for 6 h. The synthesized nanohybrid was structurally, texturally and morphologically characterized using different techniques such as X-ray diffraction, FTIR, XPS spectroscopy, BET analysis and FESEM microscopy. The adsorption performance of our product was estimated through the Azorubine dye removal from synthetic wastewater. We therefore studied the synergic effects of Ni/Zn adsorbent dosage, contact time, pH, adsorbate concentration, stirring speed and temperature on the Azorubine adsorption efficiency. In this investigation, we obtained bi-structure based nanoadsorbent with 54% crystallinity order composed of nickel hydrate and zinc carbonate hydroxides in irregular nanoflake-like mesoporous nanohybrid morphology. Interestingly, it was also revealed to have high specific surface area (SSA) of around 110 m2 g−1 with important textural properties of 18 nm and 0.68 cm3 g−1 average pore size and volume, respectively. Moreover, the adsorption results revealed that this novel Ni/Zn layered double hydroxide (Ni/Zn LDH) was an efficient adsorbent for Az molecule and possesses an adsorptive ability exhibiting a short equilibrium time (60 min) and a high Az adsorption capability (223 mg g−1). This fast removal efficiency was attributed to high contact surface area via mesoporous active sites accompanied with the presence of functional groups (OH− and CO32−). In addition, the Langmuir and Freundlich isotherms were studied, and the results fitted better to the Langmuir isotherm.


2001 ◽  
Vol 36 (1) ◽  
pp. 55-70 ◽  
Author(s):  
O.S. Thirunavukkarasu ◽  
T. Viraraghavan ◽  
K.S. Subramanian

Abstract Arsenic, a common toxic element is mainly transported in the environment by water. Arsenic in drinking water is of major concern to many of the water utilities in the world. Numerous studies have examined the removal of arsenic from drinking water through treatment processes such as coagulation-precipitation, reverse osmosis and ion exchange. The focus of research has now shifted to solve the problems using suitable adsorbents to achieve low level As in drinking water for communities with high raw water arsenic concentration. The determination of arsenic species is also essential for a better understanding and prediction of the toxic and carcinogenic nature of the species present in natural water systems. It is generally known that As(III) is more toxic than As(V) and inorganic arsenicals are more toxic than organic derivatives. The objective of this study was to study the arsenic adsorption behaviour on iron oxide-coated sand (IOCS) and ferrihydrite (FH). Batch studies were conducted using these adsorbents with natural water containing 325 μg/L arsenic, and the removal of approximately 90% was obtained. The adsorption capacity of the IOCS and FH used in this study for arsenic was estimated as 18.3 and 285 μg/g, respectively. The experimental data fitted well with the well-known isotherms, namely, Freundlich, Langmuir and BET, indicating a favourable adsorption by these adsorbents. Speciation studies were also conducted with natural water containing arsenic. Particulate and soluble arsenic in water were determined, and As(III) in the sample was determined by passing the sample containing arsenic through anion exchange resin (Dowex 1X8-100; acetate form) packed in the column. Speciation studies with natural water showed that the particulate and soluble arsenic contributed 11.4 and 88.6% of the total arsenic present in the natural water, respectively. In the case of soluble arsenic, As(III) and As(V) were 47.3 and 52.7%, respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
B. C. Ang ◽  
I. I. Yaacob ◽  
Irwan Nurdin

Superparamagnetic maghemite nanoparticles were synthesized using Massart’s procedure. Nanocomposites that consist of the synthesized maghemite nanoparticles and silica were produced by dispersing the as-synthesized maghemite nanoparticles into the silica xerogel prepared by sol-gel technique. The system was then heated for 3 days at 140°C. The structure, morphology, and texture of the system were analysed by FESEM and TEM. The result from FESEM showed that the silica gel forms a network structure, which contained numerous pores, with an average pore size of 15 nm. EDX line profile analysis was carried out, and the result indicated that the embedded particles were iron oxide. EELS showed the presence of Fe-L2signal, which confirmed the presence of iron oxide particles within the silica matrix. The average diameters were 5.0 nm for as-synthesized maghemite nanoparticles and 4.4 nm for the embedded maghemite nanoparticles in silica xerogel matrix. The embedded maghemite nanoparticles in nanocomposite also showed a narrower distribution compared to as-synthesized particles. The magnetization values at 10 kOe applied field,Ms10 kOe, were 9.53 emu/g and 1.79 emu/g for as-synthesized and embedded nanoparticles, respectively. A reduction in average crystallite size was observed for the dispersed maghemite particles after formation of the nanocomposite indicating a slight dissolution of maghemite nanoparticles in silica gel.


2017 ◽  
Vol 54 (3) ◽  
pp. 181-201
Author(s):  
Rebecca Johnson ◽  
Mark Longman ◽  
Brian Ruskin

The Three Forks Formation, which is about 230 ft thick along the southern Nesson Anticline (McKenzie County, ND), has four “benches” with distinct petrographic and petrophysical characteristics that impact reservoir quality. These relatively clean benches are separated by slightly more illitic (higher gamma-ray) intervals that range in thickness from 10 to 20 ft. Here we compare pore sizes observed in scanning electron microscope (SEM) images of the benches to the total porosity calculated from binned precession decay times from a suite of 13 nuclear magnetic resonance (NMR) logs in the study area as well as the logarithmic mean of the relaxation decay time (T2 Log Mean) from these NMR logs. The results show that the NMR log is a valid tool for quantifying pore sizes and pore size distributions in the Three Forks Formation and that the T2 Log Mean can be correlated to a range of pore sizes within each bench of the Three Forks Formation. The first (shallowest) bench of the Three Forks is about 35 ft thick and consists of tan to green silty and shaly laminated dolomite mudstones. It has good reservoir characteristics in part because it was affected by organic acids and received the highest oil charge from the overlying lower Bakken black shale source rocks. The 13 NMR logs from the study area show that it has an average of 7.5% total porosity (compared to 8% measured core porosity), and ranges from 5% to 10%. SEM study shows that both intercrystalline pores and secondary moldic pores formed by selective partial dissolution of some grains are present. The intercrystalline pores are typically triangular and occur between euhedral dolomite rhombs that range in size from 10 to 20 microns. The dolomite crystals have distinct iron-rich (ferroan) rims. Many of the intercrystalline pores are partly filled with fibrous authigenic illite, but overall pore size typically ranges from 1 to 5 microns. As expected, the first bench has the highest oil saturations in the Three Forks Formation, averaging 50% with a range from 30% to 70%. The second bench is also about 35 ft thick and consists of silty and shaly dolomite mudstones and rip-up clast breccias with euhedral dolomite crystals that range in size from 10 to 25 microns. Its color is quite variable, ranging from green to tan to red. The reservoir quality of the second bench data set appears to change based on proximity to the Nesson anticline. In the wells off the southeast flank of the Nesson anticline, the water saturation averages 75%, ranging from 64% to 91%. On the crest of the Nesson anticline, the water saturation averages 55%, ranging from 40% to 70%. NMR porosity is consistent across the entire area of interest - averaging 7.3% and ranging from 5% to 9%. Porosity observed from samples collected on the southeast flank of the Nesson Anticline is mainly as intercrystalline pores that have been extensively filled with chlorite clay platelets. In the water saturated southeastern Nesson Anticline, this bench contains few or no secondary pores and the iron-rich rims on the dolomite crystals are less developed than those in the first bench. The chlorite platelets in the intercrystalline pores reduce average pore size to 500 to 800 nanometers. The third bench is about 55 ft thick and is the most calcareous of the Three Forks benches with 20 to 40% calcite and a proportionate reduction in dolomite content near its top. It is also quite silty and shaly with a distinct reddish color. Its dolomite crystals are 20 to 50 microns in size and partly abraded and dissolved. Ferroan dolomite rims are absent. This interval averages 7.1% porosity and ranges from 5% to 9%, but the pores average just 200 nanometers in size and occur mainly as microinterparticle pores between illite flakes in intracrystalline pores in the dolomite crystals. This interval has little or no oil saturation on the southern Nesson Anticline. Unlike other porosity tools, the NMR tool is a lithology independent measurement. The alignment of hydrogen nuclei to the applied magnetic field and the subsequent return to incoherence are described by two decay time constants, longitudinal relaxation time (T1) and transverse relaxation time (T2). T2 is essentially the rate at which hydrogen nuclei lose alignment to the external magnetic field. The logarithmic mean of T2 (T2 Log Mean) has been correlated to pore-size distribution. In this study, we show that the assumption that T2 Log Mean can be used as a proxy for pore-size distribution changes is valid in the Three Forks Formation. While the NMR total porosity from T2 remains relatively consistent in the three benches of the Three Forks, there are significant changes in the T2 Log Mean from bench to bench. There is a positive correlation between changes in T2 Log Mean and average pore size measured on SEM samples. Study of a “type” well, QEP’s Ernie 7-2-11 BHD (Sec. 11, T149N, R95W, McKenzie County), shows that the 1- to 5-micron pores in the first bench have a T2 Log Mean relaxation time of 10.2 msec, whereas the 500- to 800-nanometer pores in the chlorite-filled intercrystalline pores in the second bench have a T2 Log Mean of 4.96 msec. This compares with a T2 Log Mean of 2.86 msec in 3rd bench where pores average just 200 nanometers in size. These data suggest that the NMR log is a useful tool for quantifying average pore size in the various benches of the Three Forks Formation.


Author(s):  
Raja Selvaraj ◽  
Shraddha Pai ◽  
Gokulakrishnan Murugesan ◽  
Sadanand Pandey ◽  
Ruchi Bhole ◽  
...  

AbstractThe reach of nanotechnology has permeated into a range of disciplines and systematically revolutionized many manufacturing techniques. Today, nanoparticles are fabricated using varied approaches, each with its pros and cons. Of them, the green synthesis approach has been very effective in terms of overall economics and the stability of nanoparticles. The current study investigates the use of the leaf extract of Bridelia retusa for the synthesis of iron oxide nanoparticles. Typical of these nanoparticles, no specific peak was discernible on employing UV–visible spectroscopy. The size, morphological features, and crystallinity of the nanoparticles were determined by employing scanning electron microscopy and electron diffraction spectroscopy. Almost uniformly sized at 38.58 nm, the nanoparticles were spherical, constituting elemental iron at 11.5% and elemental oxygen at 59%. Their relative composition confirmed the nanoparticles to be iron oxide. X-ray diffraction studies showed the particles to be hexagonal and rhombohedral, estimating the crystallite size at 24.27 nm. BET analysis put the pore volume at 0.1198 cm3/g and pore diameter at 7.92 nm. The unique feature of the nanoparticles was that the specific surface area was 75.19 m2/g, which is more than 12 times higher than commercial α-Fe2O3. The participation of a variety of biochemicals in the leaf extract towards the reduction-cum-stabilization was confirmed using FTIR analysis. The Fenton-like catalytic activity of the nanoparticles was put to test by attempting to degrade crystal violet dye, which was completely achieved in 270 min. The kinetics of the degradation was also modelled in the study.


2006 ◽  
Vol 514-516 ◽  
pp. 1005-1009 ◽  
Author(s):  
José V. Araújo ◽  
J.A. Lopes da Silva ◽  
Margarida M. Almeida ◽  
Maria Elisabete V. Costa

Porous chitosan/brushite composite scaffolds were prepared by a freeze-drying technique, starting from brushite suspensions in chitosan solutions. The obtained scaffolds showed a regular macroporous and interconnected structure with brushite particles uniformly distributed in the chitosan matrix. The variation of the brushite concentration affected the microstructure of the final freeze-dried scaffold, in particular, its porosity and its average pore size. The yield strengths of the composite scaffolds could also be improved by the increase of the brushite content.


Sign in / Sign up

Export Citation Format

Share Document