scholarly journals An Analysis of Streamflow Trends in the Southern and Southeastern US from 1950–2015

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3345 ◽  
Author(s):  
Kirk Rodgers ◽  
Victor Roland ◽  
Anne Hoos ◽  
Elena Crowley-Ornelas ◽  
Rodney Knight

In this article, the mean daily streamflow at 139 streamflow-gaging stations (sites) in the southern and southeastern United States are analyzed for spatial and temporal patterns. One hundred and thirty-nine individual time-series of mean daily streamflow were reduced to five aggregated time series of Z scores for clusters of sites with similar temporal variability. These aggregated time-series correlated significantly with a time-series of several climate indices for the period 1950–2015. The mean daily streamflow data were subset into six time periods—starting in 1950, 1960, 1970, 1980, 1990, and 2000, and each ending in 2015, to determine how streamflow trends at individual sites acted over time. During the period 1950–2015, mean monthly and seasonal streamflow decreased at many sites based on results from traditional Mann–Kendall trend analyses, as well as results from a new analysis (Quantile-Kendall) that summarizes trends across the full range of streamflows. A trend departure index used to compare results from non-reference with reference sites identified that streamflow trends at 88% of the study sites have been influenced by non-climatic factors (such as land- and water-management practices) and that the majority of these sites were located in Texas, Louisiana, and Georgia. Analysis of the results found that for sites throughout the study area that were influenced primarily by climate rather than human activities, the step increase in streamflow in 1970 documented in previous studies was offset by subsequent monotonic decreases in streamflow between 1970 and 2015.

Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 905
Author(s):  
Sabrina Islam ◽  
C. Emdad Haque ◽  
Shakhawat Hossain ◽  
John Hanesiak

Numerous studies on climate change and variability have revealed that these phenomena have noticeable influence on the epidemiology of dengue fever, and such relationships are complex due to the role of the vector—the Aedes mosquitoes. By undertaking a step-by-step approach, the present study examined the effects of climatic factors on vector abundance and subsequent effects on dengue cases of Dhaka city, Bangladesh. Here, we first analyzed the time-series of Stegomyia indices for Aedes mosquitoes in relation to temperature, rainfall and relative humidity for 2002–2013, and then in relation to reported dengue cases in Dhaka. These data were analyzed at three sequential stages using the generalized linear model (GLM) and generalized additive model (GAM). Results revealed strong evidence that an increase in Aedes abundance is associated with the rise in temperature, relative humidity, and rainfall during the monsoon months, that turns into subsequent increases in dengue incidence. Further we found that (i) the mean rainfall and the lag mean rainfall were significantly related to Container Index, and (ii) the Breteau Index was significantly related to the mean relative humidity and mean rainfall. The relationships of dengue cases with Stegomyia indices and with the mean relative humidity, and the lag mean rainfall were highly significant. In examining longitudinal (2001–2013) data, we found significant evidence of time lag between mean rainfall and dengue cases.


2004 ◽  
Vol 155 (5) ◽  
pp. 142-145 ◽  
Author(s):  
Claudio Defila

The record-breaking heatwave of 2003 also had an impact on the vegetation in Switzerland. To examine its influences seven phenological late spring and summer phases were evaluated together with six phases in the autumn from a selection of stations. 30% of the 122 chosen phenological time series in late spring and summer phases set a new record (earliest arrival). The proportion of very early arrivals is very high and the mean deviation from the norm is between 10 and 20 days. The situation was less extreme in autumn, where 20% of the 103 time series chosen set a new record. The majority of the phenological arrivals were found in the class «normal» but the class«very early» is still well represented. The mean precocity lies between five and twenty days. As far as the leaf shedding of the beech is concerned, there was even a slight delay of around six days. The evaluation serves to show that the heatwave of 2003 strongly influenced the phenological events of summer and spring.


2009 ◽  
Vol 27 (1) ◽  
pp. 1-30 ◽  
Author(s):  
P. Prikryl ◽  
V. Rušin ◽  
M. Rybanský

Abstract. A sun-weather correlation, namely the link between solar magnetic sector boundary passage (SBP) by the Earth and upper-level tropospheric vorticity area index (VAI), that was found by Wilcox et al. (1974) and shown to be statistically significant by Hines and Halevy (1977) is revisited. A minimum in the VAI one day after SBP followed by an increase a few days later was observed. Using the ECMWF ERA-40 re-analysis dataset for the original period from 1963 to 1973 and extending it to 2002, we have verified what has become known as the "Wilcox effect" for the Northern as well as the Southern Hemisphere winters. The effect persists through years of high and low volcanic aerosol loading except for the Northern Hemisphere at 500 mb, when the VAI minimum is weak during the low aerosol years after 1973, particularly for sector boundaries associated with south-to-north reversals of the interplanetary magnetic field (IMF) BZ component. The "disappearance" of the Wilcox effect was found previously by Tinsley et al. (1994) who suggested that enhanced stratospheric volcanic aerosols and changes in air-earth current density are necessary conditions for the effect. The present results indicate that the Wilcox effect does not require high aerosol loading to be detected. The results are corroborated by a correlation with coronal holes where the fast solar wind originates. Ground-based measurements of the green coronal emission line (Fe XIV, 530.3 nm) are used in the superposed epoch analysis keyed by the times of sector boundary passage to show a one-to-one correspondence between the mean VAI variations and coronal holes. The VAI is modulated by high-speed solar wind streams with a delay of 1–2 days. The Fourier spectra of VAI time series show peaks at periods similar to those found in the solar corona and solar wind time series. In the modulation of VAI by solar wind the IMF BZ seems to control the phase of the Wilcox effect and the depth of the VAI minimum. The mean VAI response to SBP associated with the north-to-south reversal of BZ is leading by up to 2 days the mean VAI response to SBP associated with the south-to-north reversal of BZ. For the latter, less geoeffective events, the VAI minimum deepens (with the above exception of the Northern Hemisphere low-aerosol 500-mb VAI) and the VAI maximum is delayed. The phase shift between the mean VAI responses obtained for these two subsets of SBP events may explain the reduced amplitude of the overall Wilcox effect. In a companion paper, Prikryl et al. (2009) propose a new mechanism to explain the Wilcox effect, namely that solar-wind-generated auroral atmospheric gravity waves (AGWs) influence the growth of extratropical cyclones. It is also observed that severe extratropical storms, explosive cyclogenesis and significant sea level pressure deepenings of extratropical storms tend to occur within a few days of the arrival of high-speed solar wind. These observations are discussed in the context of the proposed AGW mechanism as well as the previously suggested atmospheric electrical current (AEC) model (Tinsley et al., 1994), which requires the presence of stratospheric aerosols for a significant (Wilcox) effect.


2019 ◽  
Vol 23 (10) ◽  
pp. 4323-4331 ◽  
Author(s):  
Wouter J. M. Knoben ◽  
Jim E. Freer ◽  
Ross A. Woods

Abstract. A traditional metric used in hydrology to summarize model performance is the Nash–Sutcliffe efficiency (NSE). Increasingly an alternative metric, the Kling–Gupta efficiency (KGE), is used instead. When NSE is used, NSE = 0 corresponds to using the mean flow as a benchmark predictor. The same reasoning is applied in various studies that use KGE as a metric: negative KGE values are viewed as bad model performance, and only positive values are seen as good model performance. Here we show that using the mean flow as a predictor does not result in KGE = 0, but instead KGE =1-√2≈-0.41. Thus, KGE values greater than −0.41 indicate that a model improves upon the mean flow benchmark – even if the model's KGE value is negative. NSE and KGE values cannot be directly compared, because their relationship is non-unique and depends in part on the coefficient of variation of the observed time series. Therefore, modellers who use the KGE metric should not let their understanding of NSE values guide them in interpreting KGE values and instead develop new understanding based on the constitutive parts of the KGE metric and the explicit use of benchmark values to compare KGE scores against. More generally, a strong case can be made for moving away from ad hoc use of aggregated efficiency metrics and towards a framework based on purpose-dependent evaluation metrics and benchmarks that allows for more robust model adequacy assessment.


Forecasting ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 39-55
Author(s):  
Rodgers Makwinja ◽  
Seyoum Mengistou ◽  
Emmanuel Kaunda ◽  
Tena Alemiew ◽  
Titus Bandulo Phiri ◽  
...  

Forecasting, using time series data, has become the most relevant and effective tool for fisheries stock assessment. Autoregressive integrated moving average (ARIMA) modeling has been commonly used to predict the general trend for fish landings with increased reliability and precision. In this paper, ARIMA models were applied to predict Lake Malombe annual fish landings and catch per unit effort (CPUE). The annual fish landings and CPUE trends were first observed and both were non-stationary. The first-order differencing was applied to transform the non-stationary data into stationary. Autocorrelation functions (AC), partial autocorrelation function (PAC), Akaike information criterion (AIC), Bayesian information criterion (BIC), square root of the mean square error (RMSE), the mean absolute error (MAE), percentage standard error of prediction (SEP), average relative variance (ARV), Gaussian maximum likelihood estimation (GMLE) algorithm, efficiency coefficient (E2), coefficient of determination (R2), and persistent index (PI) were estimated, which led to the identification and construction of ARIMA models, suitable in explaining the time series and forecasting. According to the measures of forecasting accuracy, the best forecasting models for fish landings and CPUE were ARIMA (0,1,1) and ARIMA (0,1,0). These models had the lowest values AIC, BIC, RMSE, MAE, SEP, ARV. The models further displayed the highest values of GMLE, PI, R2, and E2. The “auto. arima ()” command in R version 3.6.3 further displayed ARIMA (0,1,1) and ARIMA (0,1,0) as the best. The selected models satisfactorily forecasted the fish landings of 2725.243 metric tons and CPUE of 0.097 kg/h by 2024.


Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2592-2598
Author(s):  
Anthony P. Keinath

The objective of this study was to evaluate fungicide applications, host resistance, and trellising, alone and in combination, as management practices for downy mildew on slicing cucumber. A split-split plot experimental design was used with three and four replications in spring and fall 2017, respectively. The whole-plot treatment was fungicide, four applications of chlorothalonil (Bravo Weather Stik 6SC) alternated with three applications of cyazofamid (Ranman 400SC), or water. Split plots were nontrellised or trellised with four strings supported by stakes. Split-split plots were cultivar Bristol, which is intermediately resistant to downy mildew, or cultivar Speedway, which is susceptible to downy mildew with similar parentage as Bristol. In both seasons, area under the disease progress curve (AUDPC) values were lower with fungicides than water for both cultivars. In the spring, AUDPC for Bristol was lower than for Speedway regardless of fungicide treatment. In the fall, Bristol had a lower AUDPC than Speedway with fungicides, but the AUDPC did not differ between the two cultivars with water. The mean AUDPC for trellised plants (376.2) was lower than for nontrellised plants (434.0; P = 0.007). Fungicide applications increased marketable and total fruit weights in both seasons (P ≤ 0.0002). Marketable weight with fungicides was almost double (93% greater) the marketable weight with water. Marketable weight was 55% greater for Bristol than for Speedway in spring, but yields did not differ between cultivars in fall (season-by-cultivar interaction, P ≤ 0.0003). Because trellising had no effect on marketable yields (P = 0.11), trellising is not recommended for managing downy mildew on slicing cucumber. Of the three management techniques examined, fungicides had the largest effects on disease and yields, followed by cultivar resistance.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Ari Wibisono ◽  
Petrus Mursanto ◽  
Jihan Adibah ◽  
Wendy D. W. T. Bayu ◽  
May Iffah Rizki ◽  
...  

Abstract Real-time information mining of a big dataset consisting of time series data is a very challenging task. For this purpose, we propose using the mean distance and the standard deviation to enhance the accuracy of the existing fast incremental model tree with the drift detection (FIMT-DD) algorithm. The standard FIMT-DD algorithm uses the Hoeffding bound as its splitting criterion. We propose the further use of the mean distance and standard deviation, which are used to split a tree more accurately than the standard method. We verify our proposed method using the large Traffic Demand Dataset, which consists of 4,000,000 instances; Tennet’s big wind power plant dataset, which consists of 435,268 instances; and a road weather dataset, which consists of 30,000,000 instances. The results show that our proposed FIMT-DD algorithm improves the accuracy compared to the standard method and Chernoff bound approach. The measured errors demonstrate that our approach results in a lower Mean Absolute Percentage Error (MAPE) in every stage of learning by approximately 2.49% compared with the Chernoff Bound method and 19.65% compared with the standard method.


2014 ◽  
Vol 17 (04) ◽  
pp. 1450022 ◽  
Author(s):  
M. Monica Hussein ◽  
Zhong-Guo Zhou

This paper investigates the monthly initial return and its conditional return volatility for Chinese IPOs. We find that the mean initial return (IR) and cross-sectional return volatility are highly auto- and cross-correlated, and time-varying. We propose a system of two simultaneous equations: a GARCH-in-mean (GARCH-M) process with an ARMA(1,1) adjustment in the residuals for the IR and an EGARCH process for the conditional return volatility, assuming that the IR and its conditional return volatility are linear functions of the same market, firm- and offer-specific characteristics. We find that the model captures both time-series and cross-sectional correlations at the mean and variance levels. Our findings suggest that the conditional return volatility affects the IR positively and significantly, in addition to the traditional market, firm- and offer-specific characteristics. IPOs with higher conditional return volatility, as a proxy for information asymmetry, tend to be underpriced more. The paper demonstrates the merit of using a conditional variance model, along with time series and cross-sectional analysis to price Chinese IPOs.


Development ◽  
1999 ◽  
Vol 126 (24) ◽  
pp. 5635-5644 ◽  
Author(s):  
M.E. Griffith ◽  
A. da Silva Conceicao ◽  
D.R. Smyth

PETAL LOSS is a new class of flower development gene whose mutant phenotype is confined mostly to the second whorl. Two properties are disrupted, organ initiation and organ orientation. Initiation is frequently blocked, especially in later-formed flowers, or variably delayed. The few petals that arise occupy a wider zone of the flower primordium than normal. Also, a minority of petals are trumpet-shaped, thread-like or stamenoid. Studies of ptl combined with homeotic mutants have revealed that the mutant effect is specific to the second whorl, not to organs with a petal identity. We propose that the PTL gene normally promotes the induction of organ primordia in specific regions of the second floral whorl. In ptl mutants, these regions are enlarged and organ induction is variably reduced, often falling below a threshold. A dominant genetic modifier of the ptl mutant phenotype was found in the Landsberg erecta strain that significantly boosts the mean number of petals per flower, perhaps by reinforcing induction so that the threshold is now more often reached. The second major disruption in ptl mutants relates to the orientation adopted by second whorl organs from early in their development. In single mutants the full range of orientations is seen, but when B function (controlling organ identity) is also removed, most second whorl organs now face outwards rather than inwards. Orientation is unaffected in B function single mutants. Thus petals apparently perceive their orientation within the flower primordium by a mechanism requiring PTL function supported redundantly by that of B class genes.


Sign in / Sign up

Export Citation Format

Share Document