scholarly journals Testing the antimicrobial activity of essential oils

2011 ◽  
pp. 71-74
Author(s):  
Adela Frankova ◽  
Pavel Kloucek ◽  
Jakub Smid ◽  
Lenka Nedorostova

The vapor phase of some essential oils proved to have antimicrobial activity. Utilization of the vapor phase of Eos is presently understood as one of the possible alternatives to synthetic food preservatives which could be used in the future. However, testing the vapor phase of EOs against microorganisms causing food-borne diseases (e.g. Salmonella enteritidis or Staphylococcus aureus) or food spoilage is relatively new. Consequently, due to the large number of known EOs, research on their antimicrobial activity is still largely in the phase of in vitro rather than in vivo testing. Moreover, no standard and reliable method for fast screening of a wide range of samples exists. Thus, the aim of this study is to show results concerning tests of the antimicrobial activity of EOs against S. enteritidis or S. aureus, which were conducted by two modifications of the disc volatilization method we developed. The lately developed method has the potential to become widely used for fast screening of EO antimicrobial activity in the vapor phase.

1992 ◽  
Vol 3 (4) ◽  
pp. 193-201 ◽  
Author(s):  
George G Zhanel ◽  
Daryl J Hoban ◽  
Godfrey KM Harding

Antimicrobial activity is not an ‘all or none’ effect. An increase in the rate and extent of antimicrobial action is usually observed over a wide range of antimicrobial concentrations. Subinhibitory antimicrobial concentrations are well known to produce significant antibacterial effects, and various antimicrobials at subinhibitory concentrations have been reported to inhibit the rate of bacterial growth. Bacterial virulence may be increased or decreased by subinhibitory antimicrobial concentrations by changes in the ability of bacteria to adhere to epithelial cells or by alterations in bacterial susceptibility to host immune defences. Animal studies performed in rats, hamsters and rabbits demonstrate decreased bacterial adherence, reduced infectivity and increased survival of animals treated with subinhibitory antimicrobial concentrations compared to untreated controls. The major future role of investigation of subinhibitory antimicrobial concentrations will be to define more fully, at a molecular level, how antimicrobials exert their antibacterial effects.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Amy B. Howell ◽  
Doris H. D'Souza

Pomegranates have been known for hundreds of years for their multiple health benefits, including antimicrobial activity. The recent surge in multidrug-resistant bacteria and the possibility of widespread global virus pandemics necessitate the need for additional preventative and therapeutic options to conventional drugs. Research indicates that pomegranates and their extracts may serve as natural alternatives due to their potency against a wide range of bacterial and viral pathogens. Nearly every part of the pomegranate plant has been tested for antimicrobial activities, including the fruit juice, peel, arils, flowers, and bark. Many studies have utilized pomegranate peel with success. There are various phytochemical compounds in pomegranate that have demonstrated antimicrobial activity, but most of the studies have found that ellagic acid and larger hydrolyzable tannins, such as punicalagin, have the highest activities. In some cases the combination of the pomegranate constituents offers the most benefit. The positive clinical results on pomegranate and suppression of oral bacteria are intriguing and worthy of further study. Much of the evidence for pomegranates’ antibacterial and antiviral activities against foodborne pathogens and other infectious disease organisms comes fromin vitrocell-based assays, necessitating further confirmation ofin vivoefficacy through human clinical trials.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Rossella Russo ◽  
Maria Tiziana Corasaniti ◽  
Giacinto Bagetta ◽  
Luigi Antonio Morrone

Essential oils are complex mixtures of several components endowed with a wide range of biological activities, including antiseptic, anti-inflammatory, spasmolytic, sedative, analgesic, and anesthetic properties. A growing body of scientific reports has recently focused on the potential of essential oils as anticancer treatment in the attempt to overcome the development of multidrug resistance and important side effects associated with the antitumor drugs currently used. In this review we discuss the literature on the effects of essential oils in  in vitroandin vivomodels of cancer, focusing on the studies performed with the whole phytocomplex rather than single constituents.


2012 ◽  
Vol 47 (2) ◽  
pp. 161-165 ◽  
Author(s):  
Pavel Kloucek ◽  
Jakub Smid ◽  
Adela Frankova ◽  
Ladislav Kokoska ◽  
Irena Valterova ◽  
...  

2016 ◽  
Vol 11 (4) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Lauren AE Erland ◽  
Christopher R Bitcon ◽  
Ashley D Lemke ◽  
Soheil S Mahmoud

A growing body of literature indicates that many synthetic pesticides have adverse effects on human, animal, and environmental health. As a result, plant-derived natural products are quickly gaining momentum as safer and less ecologically damaging alternatives due to their low toxicity, high biodegradability, and good specificity. Essential oils of Lavandula angustifolia, Lavandula x intermedia cv Grosso, and Lavandula x intermedia cv Provence as well as various mono- and sesquiterpene essential oil constituents were tested in order to assess their antifungal potential on three important agricultural pathogens: Botrytis cinerea, Mucor piriformis, and Penicillium expansum. Fungal susceptibility testing was performed using disk diffusion assays. The majority of essential oil constituents tested did not have a significant effect; however, 3-carene, carvacrol, geraniol, nerol and perillyl alcohol demonstrated significant inhibition at concentrations as low as 1 μL/mL. In vivo testing using strawberry fruit as a model system supported in vitro results and revealed that perillyl alcohol, carvacrol and 3-carene were effective in limiting infection by postharvest pathogens.


2017 ◽  
Vol 15 (1) ◽  
pp. 352-370 ◽  
Author(s):  
Charis Anastasiou ◽  
Gerhard Buchbauer

AbstractEssential oils (EOs) exhibit a wide range of pharmacological properties, which have been reported over the years in various studies. The aim of this literature review is to present the latest findings of the immunomodulatory effects of EOs. From 2008 to 2016in vivo- and/orin vitro-studies, most of which were published in the last couple of years, have been selected based on their topic relevance, namely immunomodulatory, anti-inflammatory, antileishmanial, antiallergic, and anticancer effects of various EOs. These findings show modulation of pro- and anti-inflammatory cytokines, antiproliferative, chemotactic properties and also exert antiparasitic effects by inhibiting the pro, axenic and intramacrophagic amastigote forms of Leishmania parasites or by modulating the TH1 and TH2 immune responses. Furthermore, the EOs of some plants show the ability to reduce the mast cell degranulation and improve the airway inflammation and mucus obstruction in the cases of immediate hypersensitivity in murine models. Additionally, the cytotoxicity of some EOs against human melanoma, hepatoma, lung, prostate and breast cancer cell lines proposed their potential antitumor effect by an increased immunosuppressive (cytostatic) activity.


1999 ◽  
Vol 86 (6) ◽  
pp. 2106-2114 ◽  
Author(s):  
Dennis R. Trumble ◽  
James A. Magovern

Electrically stimulated skeletal muscle represents a potentially unlimited source of energy for the actuation of motor prostheses. Devices to harvest and deliver contractile power have proven mechanically feasible, but long-term efficacy has not been demonstrated. This report describes recent refinements in muscle energy converter (MEC) design and details the development of an implantable afterload chamber (IAC) designed to facilitate implant testing. The IAC comprises a fluid-filled bladder housed within a titanium cylinder that connects directly to the MEC. A vascular access port allows percutaneous measurement and adjustment of air pressure within the housing and provides a means both to monitor MEC function and to control hydraulic loading conditions. Data from in vitro tests show that IAC pressure mirrors changes in MEC-piston displacement over a wide range of actuation speeds and stroke lengths. Stroke lengths and actuation forces calculated from IAC pressure readings were typically found to be within 5% of measured values. This testing scheme may yield important information in regard to the ability to harness energy from in situ muscle over prolonged periods.


2012 ◽  
Vol 535-537 ◽  
pp. 2404-2408
Author(s):  
Bin Zeng

Cecropins are cationic molecules with a wide range of antimicrobial activities. The native peptide cecropins from Musca domestica (Md-Cec) have antimicrobial activity against both Gram-positive and Gram-negative bacteria. In the present study, cDNA fragments encoding both the Md-Cec-L (62aa) and Md-Cec-S (40 aa) peptides of Md-Cec were respectively expressed using the pMAL-c4x expression vector. High level expression of Md-Cec-L was achieved in Escherichia coli, while expression of Md-Cec-S failed to reach a decent level due to its high level of toxicity to the host cells. Md-Cec-L was expressed as a soluble form using a maltose binding protein (MBP) system, whose product is a MBP-tagged fusion protein, and separated with the carrier amyrose resin. Heterologous expression in E. coli and antimicrobial activity assays showed that both the recombinant fusion protein Md-Cec-L and Md-Cec-S have exhibited antimicrobial activity in vivo; and Md-Cec-L also exhibited antimicrobial activity in vitro. Md-Cec has the potential to be developed as a novel type of antimicrobial drug or food preservative.


Author(s):  
Peter Lanzerstorfer ◽  
Georg Sandner ◽  
Johannes Pitsch ◽  
Bianca Mascher ◽  
Tobias Aumiller ◽  
...  

Abstract Essential oils (EOs) have attracted increased interest for different applications such as food preservatives, feed additives and ingredients in cosmetics. Due to their reported variable composition of components, they might be acutely toxic to humans and animals in small amounts. Despite the necessity, rigorous toxicity testing in terms of safety evaluation has not been reported so far, especially using alternatives to animal models. Here, we provide a strategy by use of alternative in vitro (cell cultures) and in vivo (Caenorhabditis elegans, hen’s egg test) approaches for detailed investigation of the impact of commonly used rosemary, citrus and eucalyptus essential oil on acute, developmental and reproductive toxicity as well as on mucous membrane irritation. In general, all EOs under study exhibited a comparable impact on measured parameters, with a slightly increased toxic potential of rosemary oil. In vitro cell culture results indicated a concentration-dependent decrease of cell viability for all EOs, with mean IC50 values ranging from 0.08 to 0.17% [v/v]. Similar results were obtained for the C. elegans model when using a sensitized bus-5 mutant strain, with a mean LC50 value of 0.42% [v/v]. In wild-type nematodes, approximately tenfold higher LC50 values were detected. C. elegans development and reproduction was already significantly inhibited at concentrations of 0.5% (wild-type) and 0.1% (bus-5) [v/v] of EO, respectively. Gene expression analysis revealed a significant upregulation of xenobiotic and oxidative stress genes such as cyp-14a3, gst-4, gpx-6 and sod-3. Furthermore, all three EOs under study showed an increased short-time mucous membrane irritation potential, already at 0.5% [v/v] of EO. Finally, GC–MS analysis was performed to quantitate the relative concentration of the most prominent EO compounds. In conclusion, our results demonstrate that EOs can exhibit severe toxic properties, already at low concentrations. Therefore, a detailed toxicological assessment is highly recommended for each EO and single intended application.


Sign in / Sign up

Export Citation Format

Share Document