scholarly journals Effect of Redox Additive Electrolyte on the Electrochemical Performance of MnO2 Nanorods for Supercapacitor Application

Pure MnO2 nanorods were synthesized by hydrothermal method and characterized by different techniques to analyze their crystalline nature, surface morphology, functional groups, and optical properties. XRD analysis confirms that the prepared nanorods possess a tetragonal crystalline structure. The occurrence of nanorods was confirmed by SEM analysis and its elemental composition was studied by elemental mapping. MnO2 nanorods modified working electrode was fabricated by the deposition of prepared nanorods on nickel foil. Electrochemical performance of the MnO2 nanorods modified working electrode was studied using redox additive based electrolyte containing 0.1M K4 [Fe(CN)6 ] in 1M KOH solution. The maximum specific capacitance of the prepared nanorods in 1M KOH electrolyte was 89 Fg-1 and it is greatly enhanced by the addition of 0.1M K4 [Fe(CN)6 ] redox additives (634 Fg-1 ).

2021 ◽  
Author(s):  
M Sankareswaran ◽  
M Vanitha ◽  
P. Rajiv ◽  
A. Anbukumaran

Abstract The current investigation reports on a green route, simple and eco-friendly method for synthesis of silica nanoparticles from Phyllantus emblica. Appropriate characterization techniques were employed to assess the crystalline nature, microstructure, size, purity, elemental composition and stability of as-biosynthesized silica nanoparticles. The XRD analysis showed a wide-ranging peak at 22∘ of 2θ value and proved that the nanoparticles were crystalline nature with 32 nm average size of particles. FT-IR studies confirmed the occurrence of metal oxide group and presence of phyto-molecules namely hydroxyl, amide, and carboxyl functional groups, which were responsible for formation and stabilization of silica nanomaterials. TGA and Zeta potential analysis determined that silica nanoparticles are highly thermostable. EDX analysis revealed the purity of nanomaterials and spectra confirmed that formation of silica nanomaterials (72.97 weight percentage of SiO2 content) with low impurities. SEM analysis shows that the particles are spherical in shape with low agglomeration. This research work concluded that the P. emblica was an excellent and reliable green resource for production of highly stable and potential silica nanoparticles.


Fe2O3 /CeO2 nanocomposite was synthesized by a chemical precipitation method in room temperature. The prepared nanocomposite has been subjected to some characterization techniques such as XRD, SEM, FTIR, CV, etc., The presence of crystalline phases of CeO2 and Fe2O3 were confirmed by the powder X–Ray diffraction analysis. Surface morphology of the prepared nanocomposite has been analyzed using SEM analysis. The functional group vibrations were analyzed by FTIR technique. The maximum specific capacitance achieved by using 1M KOH electrolyte solution is about 242 Fg-1 at 5 Ag-1 current density.


2020 ◽  
Vol 16 (4) ◽  
pp. 578-583
Author(s):  
Muhammad Asif Hussain ◽  
Adnan Maqbool ◽  
Abbas Saeed Hakeem ◽  
Fazal Ahmad Khalid ◽  
Muhammad Asif Rafiq ◽  
...  

Background: The development of new bioimplants with enhanced mechanical and biomedical properties have great impetus for researchers in the field of biomaterials. Metallic materials such as stainless steel 316L (SS316L), applied for bioimplants are compatible to the human osteoblast cells and bear good toughness. However, they suffer by corrosion and their elastic moduli are very high than the application where they need to be used. On the other hand, ceramics such as hydroxyapatite (HAP), is biocompatible as well as bioactive material and helps in bone grafting during the course of bone recovery, it has the inherent brittle nature and low fracture toughness. Therefore, to overcome these issues, a hybrid combination of HAP, SS316L and carbon nanotubes (CNTs) has been synthesized and characterized in the present investigation. Methods: CNTs were acid treated to functionalize their surface and cleaned prior their addition to the composites. The mixing of nano-hydroxyapatite (HAPn), SS316L and CNTs was carried out by nitrogen gas purging followed by the ball milling to insure the homogeneous mixing of the powders. In three compositions, monolithic HAPn, nanocomposites of CNTs reinforced HAPn, and hybrid nanocomposites of CNTs and SS316L reinforced HAPn has been fabricated by spark plasma sintering (SPS) technique. Results: SEM analysis of SPS samples showed enhanced sintering of HAP-CNT nanocomposites, which also showed significant sintering behavior when combined with SS316L. Good densification was achieved in the nanocomposites. No phase change was observed for HAP at relatively higher sintering temperatures (1100°C) of SPS and tricalcium phosphate phase was not detected by XRD analysis. This represents the characteristic advantage with enhanced sintering behavior by SPS technique. Fracture toughness was found to increase with the addition of CNTs and SS316L in HAPn, while hardness initially enhanced with the addition of nonreinforcement (CNTs) in HAPn and then decrease for HAPn-CNT-SS316L hybrid nanocomposites due to presence of SS316L. Conclusion: A homogeneous distribution of CNTs and SPS technique resulted in the improved mechanical properties for HAPn-CNT-SS316L hybrid nanocomposites than other composites and suggested their application as bioimplant materials.


Author(s):  
Minakshi Chaudhary ◽  
Yogesh Hase ◽  
Ashwini Punde ◽  
Pratibha Shinde ◽  
Ashish Waghmare ◽  
...  

: Thin films of PbS were prepared onto glass substrates by using a simple and cost effective CBD method. Influence of deposition time on structural, morphology and optical properties have been investigated systematically. The XRD analysis revealed that PbS films are polycrystalline with preferred orientation in (200) direction. Enhancement in crystallinity and PbS crystallite size has been observed with increase in deposition time. Formation of single phase PbS thin films has been further confirmed by Raman spectroscopy. The surface morphology analysis revealed the formation of prismatic and pebble-like PbS particles and with increase in deposition time these PbS particles are separated from each other without secondary growth. The data obtained from the EDX spectra shows the formation of high-quality but slightly sulfur rich PbS thin films over the entire range of deposition time studied. All films show increase in absorption with increase in deposition time and a strong absorption in the visible and sub-band gap regime of NIR range of the spectrum with red shift in band edge. The optical band gap shows decreasing trend, as deposition time increases but it is higher than the band gap of bulk PbS.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 154-161 ◽  
Author(s):  
Gao Yurong ◽  
Li Dapeng

AbstractCorn starch/polyvinyl alcohol (PVA)/glycerol composite films incorporated with ε-polylysine were prepared, and their properties were investigated. The Fourier-transform infrared (FTIR) spectroscopy indicated that the interactions happened between the amino group of ε-polylysine and hydroxyl group starch/PVA composite films. X-ray diffraction (XRD) analysis showed that the addition of ε-polylysine decreased the intensity of all crystal peaks. Thermogravimetric (TGA) analysis suggested that ε-polylysine improved the thermal stability of composite films. Scanning electron microscopic (SEM) analysis showed that the upper surface of composite films incorporated with ε-polylysine presented more compact and flat surface. The antimicrobial activity of the composite film progressively increased with the increasing of ε-polylysine concentration (P < 0.05). The tensile strength, elongation at break and water absorption significantly increased, whereas water solubility decreased with the increasing of ε-polylysine concentration (P < 0.05). Therefore, the corn starch/PVA/glycerol composite films incorporated with ε-polylysine had good mechanical, physical and antimicrobial properties and could have potential application as a novel antimicrobial packaging material.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1728
Author(s):  
Peng Wen ◽  
Teng-Gen Hu ◽  
Yan Wen ◽  
Ke-Er Li ◽  
Wei-Peng Qiu ◽  
...  

An ethyl acetate extract from of Nervilia fordii (NFE) with considerable suppression activity on lipid peroxidation (LPO) was first obtained with total phenolic and flavonoid contents and anti-LPO activity (IC50) of 86.67 ± 2.5 mg GAE/g sample, 334.56 ± 4.7 mg RE/g extract and 0.307 mg/mL, respectively. In order to improve its stability and expand its application in antioxidant packaging, the nano-encapsulation of NFE within poly(vinyl alcohol) (PVA) and polyvinyl(pyrrolidone) (PVP) bio-composite film was then successfully developed using electrospinning. SEM analysis revealed that the NFE-loaded fibers exhibited similar morphology to the neat PVA/PVP fibers with a bead-free and smooth morphology. The encapsulation efficiency of NFE was higher than 90% and the encapsulated NFE still retained its antioxidant capacity. Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) analysis confirmed the successful encapsulation of NFE into fibers and their compatibility, and the thermal stability of which was also improved due to the intermolecular interaction demonstrated by thermo gravimetric analysis (TGA). The ability to preserve the fish oil’s oxidation and extend its shelf-life was also demonstrated, suggesting the obtained PVA/PVP/NFE fiber mat has the potential as a promising antioxidant food packaging material.


2010 ◽  
Vol 17 (05n06) ◽  
pp. 445-449 ◽  
Author(s):  
SUHUA FAN ◽  
QUANDE CHE ◽  
FENGQING ZHANG

The (100)-oriented Ca0.4Sr0.6Bi4Ti4O15(C0.4S0.6BTi ) thin film was successfully prepared by a sol-gel method on Pt/Ti/SiO2/Si substrate. The orientation and formation of thin films under different annealing schedules were studied using XRD and SEM. XRD analysis indicated that (100)-oriented C0.4S0.6BTi thin film with degree of orientation of I(200)/I(119) = 1.60 was prepared by preannealing the film at 400°C for 3 min followed by rapid thermal annealing at 800°C for 5 min. SEM analysis further indicated that the (100)-oriented C0.4S0.6BTi thin film with a thickness of about 800 nm was mainly composed of equiaxed grains. The remanent polarization and coercive field of the film were 16.1 μC/cm2 and 85 kV/cm, respectively.


2020 ◽  
Vol 59 (1) ◽  
pp. 176-187 ◽  
Author(s):  
Cornel Cobianu ◽  
Niculae Dumbravescu ◽  
Bogdan-Catalin Serban ◽  
Octavian Buiu ◽  
Cosmin Romanitan ◽  
...  

AbstractThe paper presents the morphological, structural and compositional properties of the sonochemically prepared ZnO-1.4wt% Graphene (Z-G) nanocomposites as a function of pH value of suspension varying from 8.5 to 14 and thermal annealing at 450°C in nitrogen or air ambient. The SEM analysis of the Z-G hybrids dried at 150°C in air has shown a nano-flower like nanostructure for a pH value of 14. The XRD analysis of dried Z-G hybrids revealed a crystallite size increase from 3.5 nm to 18.4 nm with pH increase, and this result was explained in terms of colloids zeta potential evolution with pH value. The Raman and EDS spectroscopy have shown a split of the G band (1575 cm−1) of graphene into two bands (1575 cm−1 and 1605 cm−1), an increased height of D (1323 cm−1) band, and an additional amount of carbon due to CO2 absorption from the air, respectively. The carbon incorporation increased with the decrease of pH, and was associated with a hydrozincite phase, Zn5(CO3)2(OH)6. The formation of dried Z-G nanocomposite was clearly demonstrated only at a pH value equal to 14, where two ZnO Raman active bands at 314.9 cm−1 and 428.2 cm−1 appeared. This result may indicate the sensitivity of the Raman spectroscopy to the nanoflower-like nanostructure of dried Z-G hybrids prepared at pH=14. The thermal treatment of Z-G hybrids in N2at 450°C has increased the number of ZnO Raman bands as a function of pH value, it has decreased the amount of additional carbon by conversion of hydrozincite to ZnO and preserved the graphene profile. The thermal treatment in air at 450°C has increased the crystalline symmetry and stoichiometry of the ZnO as revealed by high and narrow Raman band from 99 cm−1 specific to Zn optical phonons, but it has severely affected the graphene profile in the Z-G hybrid, due to combustion of graphene in oxygen from the ambient.


2022 ◽  
Author(s):  
Sunita Kumari ◽  
Dhirendra Singhal ◽  
Rinku Walia ◽  
Ajay Rathee

Abstract The present project proposes to utilize rice husk and maize cob husk ash in the cement to mitigate the adverse impact of cement on environment and to enhance the disposal of waste in a sustainable manner. Ternary concrete / MR concrete was prepared by using rise husk and maize cob ash with cement. For the present project, five concrete mixes MR-0 (Control mix), MR-1 (Rice husk ash 10% and MR-2.5%), MR-2 (Rice husk ash 10% and MR-5%), MR-3 (Rice husk ash 10% and MR-2.5%), MR-4 (Rice husk ash 10% and MR-2.5%) were prepared. M35 concrete mix was designed as per IS 10262:2009 for low slump values 0-25mm. The purpose is to find the optimum replacement level of cement in M35 grade ternary concrete for I – Shaped paver blocks.In order to study the effects of these additions, micro-structural and structural properties test of concretes have been conducted. The crystalline properties of control mix and modified concrete are analyzed by Fourier Transform Infrared Spectroscope (FTIR), Scanning Electron Microscopy (SEM), and X-Ray Diffraction (XRD). The results indicated that 10% Rice husk ash and 5% maize cob ash replaced with cement produce a desirable quality of ternary concrete mix having good compressive strength. The results of SEM analysis indicated that the morphology of both concrete were different, showing porous structure at 7 days age and become unsymmetrical with the addition of ashes. After 28 day age, the control mix contained more quantity of ettringite and became denser than ternary concrete. XRD analysis revealed the presence of portlandite in large quantity in controlled mix concrete while MR concrete had the partially hydrated particle of alite.


Sign in / Sign up

Export Citation Format

Share Document