Mechanical and tribological properties of solid lubricant composites based on thermoplastic polyimide loaded with PTFE and surface modified carbon fibers

2020 ◽  
pp. 394-400
Author(s):  
S.V. Panin ◽  
Lo Jiangkun ◽  
D.G. Buslovich ◽  
V.O. Aleksenko ◽  
L.A. Kornienko

The mechanical and tribological properties of thermoplastic polyimide based composites loaded with polytetrafl uoroethylene and milled carbon fibers, annealed and functionalized with a KH550 silane-coupling agent were studied. It has been revealed that, compared with neat PI, the composite with annealed carbon fibers and PTFE particles possessed the highest wear resistance. Reinforcing carbon fibers of hundreds micron size increase the elastic modulus by 2 times; while all other physical and mechanical properties remain at the level of unfilled PI.

2021 ◽  
pp. 095400832199079
Author(s):  
Ju-xiang Yang ◽  
Yuan Jia ◽  
Pengna Li ◽  
Ping Sun

To improve the mechanical and tribological properties of bismaleimide (BMI) resin, a novel Si-containing benzoxazine (Si-BOZ) monomer was synthesized using a solvent process and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane as a silane coupling agent. The novel Si-BOZ monomer was subsequently blended with BMI to prepare Si-BOZ/BMI polymer alloys. Furthermore, the effect of Si-BOZ content on the mechanical, tribological, and thermal properties of Si-BOZ/BMI alloys was investigated. The results revealed that the addition of Si-BOZ to BMI improved the mechanical properties and wear resistance of Si-BOZ/BMI; moreover, the glass transition temperature of cured Si-BOZ/BMI alloys was lower than that of pure BMI resin. These results confirmed that the increase in wear resistance of Si-BOZ/BMI alloys can be attributed to the increase in thermal resistance and improvement in mechanical performance owing to the addition of Si-BOZ.


2017 ◽  
Vol 30 (6) ◽  
pp. 657-666 ◽  
Author(s):  
Fangfang Li ◽  
Ying Hu ◽  
Xiaochen Hou ◽  
Xiyu Hu ◽  
Dong Jiang

In this work, the effect of thermal, mechanical, and tribological properties of the blending system of different contents of short carbon fibers (SCFs) on different-viscosity poly-ether-ether-ketone (PEEK) was reported. The composites were manufactured using injection molding technique. Mechanical and tribological properties were measured by the tensile strength, the flexural strength, the coefficient of friction, and the wear rate. The results showed that the wear resistance and mechanical properties of the PEEK with the lower viscosity appeared on a more outstanding level, and experimental results showed that PEEK composites with added 10 wt% SCFs were optimal about the tribological behaviors and mechanical properties of the composites. Furthermore, based on scanning electron microscope inspections, the situation of the friction and worn surface of the material was explained.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4896
Author(s):  
Yiren Pan ◽  
Meng Zhang ◽  
Jian Zhang ◽  
Xiaoyao Zhu ◽  
Huiguang Bian ◽  
...  

In this paper, the areca fiber was extracted by physical and chemical treatment, and then the areca fiber/natural latex composite was prepared by natural latex impregnation technology. In order to combine areca fiber and natural rubber latex better, three silane coupling agents with different action mechanism were selected: Si−69, KH550, and KH570 which were used to treat the areca fiber/natural latex compound. The results show that the silane coupling agent can change the surface of the fiber from hydrophilic surface to organophilic surface, making the bonding of areca fiber to natural latex more closely. At the same time, the mechanical properties, physical and mechanical properties, swelling properties, and dynamic viscoelastic properties of the tightly bonded areca fiber/nature latex composites were improved. After observing the micro-structure through a scanning electron microscope, it was found that the three silane coupling agents could effectively bind areca fiber and natural latex to enhance the performance of the composite material, of which Si−69 performed best, and the tensile strength and tear strength of the composite increased by 21.19% and 12.90% respectively.


2010 ◽  
Vol 13 (1-2) ◽  
pp. 49
Author(s):  
L.M. Manocha ◽  
Guddu Prasad ◽  
S. Manocha

Carbon fibers have been used as additional reinforcing fibers to improve the mechanical and tribological properties of phenolic resin-based ceramic-carbon composites. The composites comprising ceramic particulates such as Silicon carbide, Boron carbide of 1-30 micron size as reinforcement and phenolic resin as matrix carbon precursor were prepared by compaction method followed by carbonization to 1000 °C in inert atmosphere. Experimental results indicate that carbonization results in decrease in thickness and weight, the amount of reduction increasing with addition of carbon fibers results in compact high density composites. Composites comprising of 10 wt. % fibers exhibited maximum hardness, compressive strength and density after  carbonization. Tribological properties of the composites were evaluated against Cr6 ball using a pin-on-disc Tribometer with different linear speed, sliding distance and load conditions. It was found that the composites filled with lower amount of carbon fibers showed relatively higher friction coefficient value. Also, it was noted that friction coefficient increases with increase in the applied load (1N, 2N and 5N) and linear speed.


2016 ◽  
Vol 61 (1) ◽  
pp. 323-328 ◽  
Author(s):  
J. Wieczorek ◽  
B. Oleksiak ◽  
J. Łabaj ◽  
B. Węcki ◽  
M. Mańka

Phase compositions of composite materials determine their performance as well as physical and mechanical properties. Depending on the type of applied matrix and the kind, amount and morphology of the matrix reinforcement, it is possible to shape the material properties so that they meet specific operational requirements. In the paper, results of investigations on silver alloy matrix composites reinforced with ceramic particles are presented. The investigations enabled evaluation of hardness, tribological and mechanical properties as well as the structure of produced materials. The matrix of composite material was an alloy of silver and aluminium, magnesium and silicon. As the reinforcing phase, 20-60 μm ceramic particles (SiC, SiO2, Al2O3 and Cs) were applied. The volume fraction of the reinforcing phase in the composites was 10%. The composites were produced using the liquid phase (casting) technology, followed by plastic work (the KOBO method). The mechanical and tribological properties were analysed for plastic work-subjected composites. The mechanical properties were assessed based on a static tensile and hardness tests. The tribological properties were investigated under dry sliding conditions. The analysis of results led to determination of effects of the composite production technology on their performance. Moreover, a relationship between the type of reinforcing phase and the mechanical and tribological properties was established.


2014 ◽  
Vol 59 (1) ◽  
pp. 253-257
Author(s):  
M. Lijewski ◽  
V. Leshynsky ◽  
H. Wisniewska-Weinert ◽  
J. Sulej-Chojnacka ◽  
T. Rybak

Abstract In the recent years, a growth of demand for various types of self-lubricating elements of machines has been observed. A lot of parts are manufactured with the use of a powder metallurgy method. The Metal Forming Institute (INOP) in Poznan developed a modern technology, designed and made a tool for compaction of powdered parts with complex shapes and high density. The technology is being realised with a large scale equipment, which performs the forging and sizing of the sintered performs. The present work describes development of manufacturing technology and determination of mechanical and tribological properties of nanocomposites for self-lubricating bearings with a very low friction coefficient. It is envisaged to use particulate materials which consist of nano-and microparticles of solid lubricant. The study conducted aims at definition of a relationship between the microstructure and tribological properties of materials modified with solid lubricant MoS2 nanoparticles dispersed in a technological oil. INOP’s technology of nanoparticles manufacturing by RCT method (Rolling Cleavage Technology) results in that top layer of the porous bearing is modified with the nanoparticles. These layers are characterised by a low friction coefficient and considerably longer period of use. It should be noted that the stainless steel and bronze powders materials used have a good corrosion resistance. Production of the sintered bearings will disseminate the market especially in automotive and aircraft industries.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kawaljit Singh Randhawa ◽  
Ashwin Patel

Purpose The mechanical and tribological properties of polymers and polymer composites vary with different environmental conditions. This paper aims to review the influence of humidity/water conditions on various polymers and polymer composites' mechanical properties and tribological behaviors. Design/methodology/approach The influence of humidity and water absorption on mechanical and tribological properties of various polymers, fillers and composites has been discussed in this paper. Tensile strength, modulus, yield strength, impact strength, COF and wear rates of polymer composites are compared for different environmental conditions. The interaction between the water molecules and hydrophobic polymers is also represented. Findings Pure polymer matrices show somewhat mixed behavior in humid environments. Absorbed moisture generally plasticizes the epoxies and polyamides and lowers the tensile strength, yield strength and modulus. Wear rates of PVC generally decrease in humid environments, while for polyamides, it increases. Fillers like graphite and boron-based compounds exhibit low COF, while MoS2 particulate fillers exhibit higher COF at high humidity and water conditions. The mechanical properties of fiber-reinforced polymer composites tend to decrease as the rate of humidity increases while the wear rates of fiber-reinforced polymer composites show somewhat mixed behavior. Particulate fillers like metals and advanced ceramics reinforced polymer composites exhibit low COF and wear rates as the rate of humidity increases. Originality/value The mechanical and tribological properties of polymers and polymer composites vary with the humidity value present in the environment. In dry conditions, wear loss is determined by the hardness of the contacting surfaces, which may not effectively work for high humid environments. The tribological performance of composite constituents, i.e. matrix and fillers in humid environments, defines the overall performance of polymer composite in said environments.


Sign in / Sign up

Export Citation Format

Share Document