scholarly journals Recent advances and current perspectives in treatment of Alzheimer’s disease

2020 ◽  
Vol 21 (1&2) ◽  
pp. 183-186
Author(s):  
Ekta Khare ◽  
Zeeshan Fatima

Dementia is a disorder which is associated with disruption of cerebral neurons, resulting in its characteristic symptomatology. Acetylcholine neurotransmitter is found to be significant for processing memory and learning. However it is diminished in both concentration and function in patients with Alzheimer disease. Nootropics are the drugs which is used to improve memory and learning by acting as AChEI (Acetyl cholineesterase inhibitors). Cognitive enhancers include drugs interacting with receptors (e.g. NMDA receptor antagonist: memantine), Enzymes (e.g. AChE inhibitors: tacrine, donepezil, galantamine), Antioxidants (e.g. resveratrol, curcumin, and acetyl-L-carnitine), Metal chelators (e.g. calcium and zinc chelator: DP-b99), Vaccines, Monoclonal antibodies (e.g. A beta-Amyloid: solanezumab under Phase III clinical trial). Apart from the pharmacological approaches, supplementation of a healthy diet and healthy physical & mental lifestyle impact cognitive research in the future. There is no remedy for AD. Contemporary treatments just relive the behaviourial symptoms.Treatment centers around making a superior personal satisfaction for the individuals with Alzheimer infection. As of late, undifferentiated cell innovation (stem cell technology), and Nanotechnology has given new bits of knowledge into the treatment of Alzheimer's disease. In this review, we talk about current indicative medicines and future difficulties for new potential illness altering treatments.             

2019 ◽  
Vol 26 (30) ◽  
pp. 5625-5648 ◽  
Author(s):  
Jan Korabecny ◽  
Katarina Spilovska ◽  
Eva Mezeiova ◽  
Ondrej Benek ◽  
Radomir Juza ◽  
...  

: Alzheimer’s Disease (AD) is a multifactorial progressive neurodegenerative disorder characterized by memory loss, disorientation, and gradual deterioration of intellectual capacity. Its etiology has not been elucidated yet. To date, only one therapeutic approach has been approved for the treatment of AD. The pharmacotherapy of AD has relied on noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist - memantine, and acetylcholinesterase (AChE) inhibitors (AChEIs) - tacrine, donepezil, rivastigmine and galantamine. Donepezil was able to ameliorate the symptoms related to AD mainly via AChE, but also through reduction of β-amyloid burden. This review presents the overview of donepezilrelated compounds as potential anti-AD drugs developed on the basis of cholinergic hypothesis to act as solely AChE and butyrylcholinesterase (BChE) inhibitors.


CNS Spectrums ◽  
2005 ◽  
Vol 10 (S18) ◽  
pp. 6-9 ◽  
Author(s):  
Paul T. Francis

AbstractEvidence exists for both cholinergic and glutamatergic involvement in the etiology of Alzheimer's disease. Acetylcholine (ACh), a neurotransmitter essential for processing memory and learning, is decreased in both concentration and function in patients with Alzheimer's disease. This deficit and other presynaptic cholinergic deficits, including loss of cholinergic neurons and decreased acetylcholinesterase activity, underscore the cholinergic hypothesis of Alzheimer's disease. The glutamatergic hypothesis links cognitive decline in patients with Alzheimer's to neuronal damage resulting from overactivation of N-methyl-D-aspartate (NMDA) receptors by glutamate. The sustained low-level activation of NMDA receptors, which are pivotal in learning and memory, may result from deficiencies in glutamate reuptake by astroglial cells in the synaptic cleft. This article reviews the roles of ACh and glutamate in Alzheimer's disease, with particular attention given to the overlap between cholinergic and glutamatergic pathways. In addition, the potential synergy between cholinesterase inhibitors and the NMDA receptor antagonist memantine in correcting neurologic abnormalities associated with Alzheimer's disease is addressed.


Author(s):  
Tanay Dalvi ◽  
Bhaskar Dewangan ◽  
Rudradip Das ◽  
Jyoti Rani ◽  
Suchita Dattatray Shinde ◽  
...  

: The most common reason behind dementia is Alzheimer’s disease (AD) and it is predicted to be the third lifethreatening disease apart from stroke and cancer for the geriatric population. Till now only four drugs are available in the market for symptomatic relief. The complex nature of disease pathophysiology and lack of concrete evidences of molecular targets are the major hurdles for developing new drug to treat AD. The the rate of attrition of many advanced drugs at clinical stages, makes the de novo discovery process very expensive. Alternatively, Drug Repurposing (DR) is an attractive tool to develop drugs for AD in a less tedious and economic way. Therefore, continuous efforts are being made to develop a new drug for AD by repursing old drugs through screening and data mining. For example, the survey in the drug pipeline for Phase III clinical trials (till February 2019) which has 27 candidates, and around half of the number are drugs which have already been approved for other indications. Although in the past the drug repurposing process for AD has been reviewed in the context of disease areas, molecular targets, there is no systematic review of repurposed drugs for AD from the recent drug development pipeline (2019-2020). In this manuscript, we are reviewing the clinical candidates for AD with emphasis on their development history including molecular targets and the relevance of the target for AD.


2021 ◽  
pp. 1-11
Author(s):  
Danni Li ◽  
Lin Zhang ◽  
Nathaniel W. Nelson ◽  
Michelle M. Mielke ◽  
Fang Yu

Background: Utilities of blood-based biomarkers in Alzheimer’s disease (AD) clinical trials remain unknown. Objective: To evaluate the ability of plasma neurofilament light chain (NfL) to predict future declines in cognition and activities of daily living (ADL) outcomes in 26 older adults with mild-to-moderate AD dementia from the FIT-AD Trial. Methods: Plasma NfL was measured at baseline and 3 and 6 months. Cognition and ADL were assessed using the AD Assessment Scale-Cognition (ADAS-Cog) and AD Uniform Dataset Instruments and Disability Assessment for Dementia (DAD), respectively, at baseline, 3, 6, 9, and 12 months. Linear mixed effects models were used to examine the associations between baseline or change in plasma NfL and changes in outcomes. Results: Higher baseline plasma NfL was associated with greater rate of decline in ADAS-Cog from baseline to 6 months (standardized estimate of 0.00462, p = 0.02853) and in ADL from baseline to 12 months (standardized estimate of –0.00284, p = 0.03338). Greater increase in plasma NfL in short term from baseline to 3 months was associated with greater rate of decline in memory and ADL from 3 to 6 months (standardized estimate of –0.04638 [0.003], p = 0.01635; standardized estimate of –0.03818, p = 0.0435) and greater rate of decline in ADL from 3 to 12 month (standardized estimate of –0.01492, p = 0.01082). Conclusion: This study demonstrated that plasma NfL might have the potential to predict cognitive and function decline up to 12 months. However, future studies with bigger sample sizes need to confirm the findings.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 957
Author(s):  
Brad T. Casali ◽  
Erin G. Reed-Geaghan

Microglia are the resident immune cells of the brain, deriving from yolk sac progenitors that populate the brain parenchyma during development. During development and homeostasis, microglia play critical roles in synaptogenesis and synaptic plasticity, in addition to their primary role as immune sentinels. In aging and neurodegenerative diseases generally, and Alzheimer’s disease (AD) specifically, microglial function is altered in ways that significantly diverge from their homeostatic state, inducing a more detrimental inflammatory environment. In this review, we discuss the receptors, signaling, regulation and gene expression patterns of microglia that mediate their phenotype and function contributing to the inflammatory milieu of the AD brain, as well as strategies that target microglia to ameliorate the onset, progression and symptoms of AD.


2017 ◽  
Vol 474 (3) ◽  
pp. 333-355 ◽  
Author(s):  
Chris Ugbode ◽  
Yuhan Hu ◽  
Benjamin Whalley ◽  
Chris Peers ◽  
Marcus Rattray ◽  
...  

Astrocytes play a fundamental role in maintaining the health and function of the central nervous system. Increasing evidence indicates that astrocytes undergo both cellular and molecular changes at an early stage in neurological diseases, including Alzheimer's disease (AD). These changes may reflect a change from a neuroprotective to a neurotoxic phenotype. Given the lack of current disease-modifying therapies for AD, astrocytes have become an interesting and viable target for therapeutic intervention. The astrocyte transport system covers a diverse array of proteins involved in metabolic support, neurotransmission and synaptic architecture. Therefore, specific targeting of individual transporter families has the potential to suppress neurodegeneration, a characteristic hallmark of AD. A small number of the 400 transporter superfamilies are expressed in astrocytes, with evidence highlighting a fraction of these are implicated in AD. Here, we review the current evidence for six astrocytic transporter subfamilies involved in AD, as reported in both animal and human studies. This review confirms that astrocytes are indeed a viable target, highlights the complexities of studying astrocytes and provides future directives to exploit the potential of astrocytes in tackling AD.


Author(s):  
B. Vellas ◽  
P. Aisen ◽  
M. Weiner ◽  
J. Touchon

We are happy to publish the CTAD 2018 abstracts in the present JPAD issue. As you can see many new interesting studies are presented in this issue of the journal: from new drug trials to biomarkers, imaging studies, as well as new clinical outcomes. More specifically, we will have several hot topics presentation on: 1. Major drug trials using bace inhibitors (verubecestat, lanabecestat, atabecestat, elenbecestat…) in the early phase of the disease (APECS early trials…). Both clinical, biomarkers (MRI, CSF, PET) and safety data will be presented. 2. New data on blood biomarkers including a keynote from R. Bateman, and presentations from Araclon and Roche biomarkers. 3. Results from phase III and IIB trials including a novel and multi-targeted oligosaccharide in patients with mild-moderate AD in China; the AMBAR (Alzheimer’s Management By Albumin Replacement) study, the TOMMORROW trial: a trial to delay the onset of MCI due to AD and qualify a genetic biomarker algorithm, the 18-month STEADFAST trial of azeliragon in participants with mild Alzheimer’s Disease; a longitudinal 148-week extension 4. Results 18 from F-AV-1451-A16: a clinicopathological study of the correspondence between flortaucipir PET imaging and post-mortem assessment of tau pathology. 5. Latest developments in anti-amyloid monoclonal antibodies including aducanumab nonnegligible, and new results and data analyses of the BAN2401 study 201 in early AD. 6. New developments with safety and efficacy of lemborexant for sleep-wake regulation in patients with irregular sleep-wake rhythm disorders and Alzheimer’s Disease dementia. 7. Advances with the ABBV-8E12, a humanized anti-tau monoclonal antibody, for the treatment of early Alzheimer’s Disease. 8. Endpoints for early Alzheimer’s Disease clinical trials: interpretation and application of the draft FDA guidance. And many others… It is important to underline that a not negligible number of abstracts concern non amyloid targets (eg: Tau-related targets but also targets outside the classical AD cascade).


Sign in / Sign up

Export Citation Format

Share Document