scholarly journals A novel type of wearable dual-band antenna based on coplanar waveguide feeding for wearable wireless communications

2021 ◽  
Vol 51 (2) ◽  
Author(s):  
Zhengrui He ◽  
Jie Jin

A flexible and compact coplanar waveguide feed (CPW-fed) wearable antenna is introduced for wireless wearable communications applications at the industrial scientific medical (ISM) band. The proposed antenna consists of copper, which is used as the radiation patch and ground planes printed on the same side of polyimide flexible substrate. The overall size of the antenna is 30 mm × 28 mm × 0.08 mm, the results show that the antenna can transmit and receive signals in two frequency bands of 1.89–2.67 GHz and 3.02–3.23 GHz, in which radiating properties are characterized and agree well with the simulation results. The antenna is bent in different directions to further investigate the reflection coefficient and corresponding effect on the antenna under bending. The center frequency of the antenna is slightly shifted towards higher and lower frequencies when antenna is bent in X-axis and Y-axis, respectively. Furthermore, the wearability of the antenna is verified when the antenna is placed on different parts of the human body such as wrist and chest. Hence, the proposed flexible antenna is a suitable candidate for wearable wireless communication applications.

2018 ◽  
Vol 10 (9) ◽  
pp. 1088-1095
Author(s):  
Smriti Agarwal ◽  
Dharmendra Singh

AbstractIn recent years, millimeter wave (MMW) has received tremendous interest among researchers, which offers systems with high data rate communication, portability, and finer resolution. The design of the antenna at MMWs is challenging as it suffers from fabrication and measurement complexities due to associated smaller dimensions. Current state-of-the-art MMW dual-band antenna techniques demand high precision fabrication, which increases the overall cost of the system. Henceforth, the design of an MMW antenna with fabrication and measurement simplicity is quite challenging. In this paper, a simple coplanar waveguide (CPW) fed single-band MMW antenna operating at 94 GHz (W band) and a dual-band MMW antenna operating concurrently at 60 GHz (V band) and 86 GHz (E band) have been designed, fabricated, and measured. A 50 Ω CPW-to-microstrip transition has also been designed to facilitate probe measurement compatibility and to provide proper feeding to the antenna. The fabricated single frequency 94 GHz antenna shows a fractional bandwidth of 11.2% andE-plane (H-plane) gain 6.17 dBi (6.2 dBi). Furthermore, the designed MMW dual-band antenna shows fractional bandwidth: 2/6.4%, andE-plane (H-plane) gain: 7.29 dBi (7.36 dBi)/8.73 dBi (8.68 dBi) at 60/86 GHz, respectively. The proposed antenna provides a simple and cost-effective solution for different MMW applications.


2019 ◽  
Vol 11 (4) ◽  
pp. 351-358 ◽  
Author(s):  
Priyanka Garg ◽  
Priyanka Jain

AbstractIn this paper, a compact, low-profile, coplanar waveguide-fed metamaterial inspired dual-band microstrip antenna is presented for Wireless Local Area Network (WLAN) application. To achieve the goal a triangular split ring resonator is used along with an open-ended stub. The proposed antenna has a compact size of 20 × 24 mm2 fabricated on an FR-4 epoxy substrate with dielectric constant (εr) 4.4. The antenna provides two distinct bands I from 2.40 to 2.48 GHz and II from 4.7 to 6.04 GHz with reflection coefficient better than −10 dB, covering the entire WLAN (2.4/5.2/5.8 GHz) band spectrum. The performance of the proposed metamaterial inspired antenna is also studied in terms of the radiation pattern, efficiency, and the realized gain. A comparative study is also presented to show the performance of the proposed metamaterial inspired antenna with respect to other conventional antenna structures in terms of overall size, bandwidth, gain, and reflection coefficient. Finally, the antenna is fabricated and tested. The simulated results show good agreement with the measured results.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1732 ◽  
Author(s):  
Mohammad Haerinia ◽  
Sima Noghanian

In this work, a dual-band printed planar antenna, operating at two ultra-high frequency bands (2.5 GHz/4.5 GHz), is proposed for wireless power transfer for wearable applications. The receiving antenna is printed on a Kapton polyimide-based flexible substrate, and the transmitting antenna is on FR-4 substrate. The receiver antenna occupies 2.1 cm 2 area. Antennas were simulated using ANSYS HFSS software and the simulation results are compared with the measurement results.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
M. Samsuzzaman ◽  
T. Islam ◽  
N. H. Abd Rahman ◽  
M. R. I. Faruque ◽  
J. S. Mandeep

A coplanar waveguide (CPW) fed printing and wide circular slotted, dual band antenna for Wi-Fi/WiMAX applications are presented. The antenna mainly encompasses a ground with a wide circular slot in the centre, a rectangular feeding strip, and two pairs of symmetric planar invertedL(SPIL) strips connecting with the slotted ground. The tuning effects of the rectangular patch, ground size, and SPIL strips to the resonance and matching condition are examined by HFSS and the prototype is fabricated and measured. The simulation and experimental results show that the antenna has an impedance bandwidth with −10 dB reflection coefficients 600 MHz (3.26–3.86 GHz, lower band) and 1040 MHz (5.02–6.26 GHz, upper band), which can cover both the Wi-Fi 5.2/5.5/5.8 GHz and WiMAX 3.3/3.5/3.7/5.8 GHz bands. Moreover, a stable omnidirectional radiation pattern and average peak gain for lower band 3.23 dB and upper band 5.93 dB have been achieved, respectively.


Telecom ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 285-301
Author(s):  
Mariella Särestöniemi ◽  
Marko Sonkki ◽  
Sami Myllymäki ◽  
Carlos Pomalaza-Raez

This paper describes the development and evaluation of an on-body flexible antenna designed for an in-body application, as well as on-body communications at ISM and UWB frequency bands. The evaluation is performed via electromagnetic simulations using the Dassault Simulia CST Studio Suite. A planar tissue layer model, as well as a human voxel model from the human abdominal area, are used to study the antenna characteristics next to human tissues. Power flow analysis is presented to understand the power flow on the body surface as well as within the tissues. Simulation results show that this wearable flexible antenna is suitable for in-body communications in the intestinal area, e.g., for capsule endoscopy, in the industrial, scientific, and medical (ISM) band and at lower ultra-wideband (UWB). At higher frequencies, the antenna is suitable for on-body communications as well as in-body communications with lower propagation depth requirements. Additionally, an antenna prototype has been prepared and the antenna performance is verified with several on-body measurements. The measurement results show a good match with the simulation results. The novelty of the proposed antenna is a compact size and the flexible substrate material, which makes it feasible and practical for several different medical diagnosis and monitoring applications.


2021 ◽  
Vol 10 (3) ◽  
pp. 1739-1746
Author(s):  
S. M. Shah ◽  
A. A. Rosman ◽  
M. A. Z. A. Rashid ◽  
Z. Z. Abidin ◽  
F. C. Seman ◽  
...  

In this work, a compact dual-band semi-flexible antenna operating at         2.45 GHz and 5.8 GHz for the industrial, scientific and medical (ISM) band is presented. The antenna is fabricated on a semi-flexible substrate material, Rogers Duroid RO3003™ with a low-profile feature with dimensions of 30×38 mm2 which makes it a good solution for wearable applications. Bending investigation is also performed over a vacuum cylinder and the diameters are varied at 50 mm, 80 mm and 100 mm, that represents the average human arm’s diameter. The bending investigation shows that reflection coefficients for all diameters are almost similar which imply that the antenna will operate at the dual-band resonant frequencies, even in bending condition. The simulated specific absorption rate (SAR) in CST MWS® software shows that the antenna obeys the FCC and ICNIRP guidelines for 1 mW of input power. The SAR limits at 2.45 GHz for 1 g of human tissue is simulated at 0.271 W/kg (FCC standard: 1.6 W/kg) while for 10 g is at 0.0551 W/kg (ICNIRP standard: 2 W/kg. On the other hand, the SAR limits at 5.8 GHz are computed at 0.202 W/kg for 1 g and 0.0532 W/kg for 10 g.


In this paper, a rectangular patch antenna with slits for dual band capabilities is presented. The suggested antenna works for two frequencies which are at 2.5 GHz and 5.1 GHz. The first operating frequency is in the band of 2.3 to 2.7GHz with -16.8dB reflection coefficient at 2.5GHz resonating frequency, whereas the second band is 4.6 to 5.5GHz with -29.2dB reflection coefficient at 5.1GHz resonating frequency. The simulation results exhibit that, the suggested antenna works for dual band frequency having impedance bandwidth of 482 and 844 MHz respectively. The gain is observed as 2.9 dBi and 4.2 dBi of respective bands. The first frequency band can be used for Industrial, Scientific and Medical(ISM) applications and second frequency band can be used for C-band applications.


2020 ◽  
Vol 20 (2) ◽  
pp. 115-124
Author(s):  
Dhirgham Kamal Naji

In this paper, a new approach is presented for designing a miniaturized microstrip patch antenna (MPA) for dual-band applications. The proposed MPA consists of a semi-circular patch radiator fed by a 50-Ω coplanar waveguide (CPW) structure with a tapered-ground plane for enhancing impedance bandwidth over the dual-band. By inserting a folded U-shaped slot into the semi-circular patch, the proposed antenna introduces an additional higher-order mode but does not modify the resonance frequency of the lower-order mode of the patch, yielding the desired dual-band response. For antenna miniaturization, the circular-shaped radiator of the reference antenna (RA) was converted into a semi-circular radiating patch. Agreement between CST and HFSS simulated results led us to manufacture a prototype of the designed antenna on one side of an inexpensive FR-4 substrate with an overall dimension of 17 × 18 × 0.8 mm<sup>3</sup>. The measured result in terms of reflection coefficient S11 confirms that the antenna operates in both 3.5 GHz (3.4–3.7 GHz) and 5.8 GHz (5.725–5.875 GHz) bands suitable for use in WiMAX and WLAN applications, respectively. Moreover, besides an area reduction of 32% compared with the RA counterpart, the proposed antenna has other features, a simple geometry, and is easy to manufacture in comparison with previously reported antenna structures.


2014 ◽  
Vol 67 (3) ◽  
Author(s):  
M. Md. Shukor ◽  
M. Z. A. Abd. Aziz ◽  
B. H. Ahmad ◽  
M. K. Suaidi ◽  
M. A. Othman

This paper presents the antenna designed with radiating structure of 3.5 for dual band applications. This antenna is designed and simulated by using CST Studio Suite software at 2.4 GHz and 5.2 GHz based on standard IEEE 802.11a (5.15 GHz-5.35 GHz) and IEEE 802.11b (2.4 GHz-2.48 GHz) frequency bands. The radiating structure 5 and 3 are designed to radiated at frequency 2.4 GHz and 5.2 GHz respectively. Then, both structures are combined to achieve dual band resonant frequencies. The techniques that have been used to achieve dual band resonant are by designing the 3.5 shaped by using planar and coplanar waveguide (CPW) structures. There are three designs of dual band antenna which are Design A, Design B and Design C. The optimum return loss for 2.4 GHz and 5.2 GHz frequency response are -16.44 dB and -18.78 dB respectively achieved by Design C. The changes on the position of radiating structure 3 will effects the frequency response, return loss and gain of the antenna.


Sign in / Sign up

Export Citation Format

Share Document