scholarly journals Identification of Blast Resistant Genotypes among Drought Tolerant Finger Millet in Uganda

2020 ◽  
Vol 2 (1) ◽  
pp. 58-70
Author(s):  
John Charles Aru ◽  
Nelson Wanyera ◽  
Patrick Okori ◽  
Paul Gibson

Finger millet is an important food security crop among many subsistence farmers living in marginal and especially semi-arid regions of Eastern Africa. However, crop production is affected mainly by terminal drought and blast disease caused by fungus Pyricularia grisea. Both collectively lead to over 90% grain yield loss depending on environmental conditions, cropping systems and varietal differences. Therefore, resistance breakdown remains high owing to variability in the blast pathogen and weather conditions. Stable varieties should possess both blast resistance and drought. In order to initiate breeding for multiple resistance to blast on drought-tolerant background, a study was conducted to identify variability for blast resistance from adapted germplasm as an initial step in developing a breeding strategy for incorporating resistance. Thirty genotypes from drought-prone agro-ecologies and including mini core germplasm from NARO-NaSARRI national Finger Millet improvement programme were assessed. They were screened using a local virulent pathogen isolate (NGR1) from Ngora, representing Teso major farming system and is a hot spot for the blast. The screening was under controlled conditions from in Makerere University Agricultural Research Institute (MUARIK) in 2012b. The results showed significance (p<0.01) for Area Under Disease Progressive Curve (AUDPC). Subsequently, the study identified IE927, Seremi1, Seremi3, Sec220 and Kabale as highly resistant to foliar blast infection comparable to Gulu-E a standard broad-spectrum resistant check and they could be used to improve finger millet for blast resistance. Meanwhile DR33, IE9 and IE2576 as most susceptible compared to non-race -specific susceptible check E11 from Uganda.

2021 ◽  
Vol 11 ◽  
Author(s):  
Wilton Mbinda ◽  
Hosea Masaki

Climate change has significantly altered the biodiversity of crop pests and pathogens, posing a major challenge to sustainable crop production. At the same time, with the increasing global population, there is growing pressure on plant breeders to secure the projected food demand by improving the prevailing yield of major food crops. Finger millet is an important cereal crop in southern Asia and eastern Africa, with excellent nutraceutical properties, long storage period, and a unique ability to grow under arid and semi-arid environmental conditions. Finger millet blast disease caused by the filamentous ascomycetous fungus Magnaporthe oryzae is the most devastating disease affecting the growth and yield of this crop in all its growing regions. The frequent breakdown of blast resistance because of the susceptibility to rapidly evolving virulent genes of the pathogen causes yield instability in all finger millet-growing areas. The deployment of novel and efficient strategies that provide dynamic and durable resistance against many biotypes of the pathogen and across a wide range of agro-ecological zones guarantees future sustainable production of finger millet. Here, we analyze the breeding strategies currently being used for improving resistance to disease and discuss potential future directions toward the development of new blast-resistant finger millet varieties, providing a comprehensive understanding of promising concepts for finger millet breeding. The review also includes empirical examples of how advanced molecular tools have been used in breeding durably blast-resistant cultivars. The techniques highlighted are cost-effective high-throughput methods that strongly reduce the generation cycle and accelerate both breeding and research programs, providing an alternative to conventional breeding methods for rapid introgression of disease resistance genes into favorable, susceptible cultivars. New information and knowledge gathered here will undoubtedly offer new insights into sustainable finger millet disease control and efficient optimization of the crop’s productivity.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Wilton Mbinda ◽  
Agnes Kavoo ◽  
Fredah Maina ◽  
Margaret Odeph ◽  
Cecilia Mweu ◽  
...  

Abstract Background Finger millet blast disease, caused by Pyricularia oryzae, is a serious constrain of finger millet production which is threatening global food security especially to the resource poor smallholder farmers in arid and semi-arid regions. The disease adversely affects finger millet production and consumption due to its wide distribution and destruction in all finger millet growing areas of southern Asia and eastern Africa. Here, we present a study that investigated the occurrence, impact, risk factors and farmers’ knowledge and perceptions of finger millet blast in Kenya. Methods We surveyed blast disease occurrence and interviewed farmers in Bungoma and Kisii Counties of Kenya during March–April 2019. Data were analysed using SPSS statistical program. Descriptive analysis was done by calculating means, percentages, frequencies, and standard errors. Comparative statistics, chi-square and t-tests, were used to evaluate differences existing among the farm characteristics and socio-demographics and the knowledge and perceptions of blast disease and its management practices. Results Our results show that blast disease is prevalent in all surveyed areas and adversely affects the productivity of the crop leading to poor yields. The disease occurrence varied from 92 to 98%, and was significantly higher in the major finger millet growing areas compared to the minor ones. Blast occurrence was associated with rainfall, altitude, planting density, intercropping and other farming practices. In all the surveyed regions, farmers had little knowledge about blast disease identification, its detection and spread. Further, the farmers’ awareness of blast disease control was inconsistent with established practices. Conclusions Our results show mitigation of finger millet blast disease should aim at improving farmers’ adoption of best practices through development of acceptable blast-resistant finger millet varieties, use of sustainable disease management practices, fostering linkages and creating new partnerships in the production-supply chain and maintaining a functional seed system. Findings from this study provide essential insights for effective decision making and management of the disease. This is fundamental to sustainable and secure food and income for finger millet growing farmers in Kenya.


Plant Disease ◽  
2021 ◽  
Author(s):  
Samuel K Mutiga ◽  
Felix Rotich ◽  
Vincent M Were ◽  
John Kimani ◽  
David Thuranira Mwongera ◽  
...  

Rice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional and multinational efforts to develop germplasm and policy initiatives to boost production for a more food secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under sub-optimal conditions in most parts of sub-Saharan Africa (SSA). Rice blast disease, caused by the fungus Magnaporthe oryzae, represents one of the major biotic constraints to rice production under small-scale farming systems of Africa, and developing durable disease resistance is therefore of critical importance. In this review, we provide an overview of the major advances by a multinational collaborative research effort to enhance sustainable rice production across SSA and how it is affected by advances in regional policy. As part of the multinational effort, we highlight the importance of joint international partnerships in tackling multiple crop production constraints through integrated research and outreach programs. More specifically, we highlight recent progress in establishing international networks for rice blast disease surveillance, farmer engagement, monitoring pathogen virulence spectra, and the establishment of regionally-based blast resistance breeding programs. To develop blast resistant, high yielding rice varieties for Africa, we have established a breeding pipeline that utilizes real-time data of pathogen diversity and virulence spectra, to identify major and minor blast resistance genes for introgression into locally adapted rice cultivars. In addition, the project has developed a package to support sustainable rice production through regular stakeholder engagement, training of agricultural extension officers, and establishment of plant clinics.


2015 ◽  
Vol 66 (12) ◽  
pp. 1230 ◽  
Author(s):  
Ch. Srinivasarao ◽  
Sumanta Kundu ◽  
K. L. Sharma ◽  
Sharanbhoopal Reddy ◽  
A. L. Pharande ◽  
...  

Magnesium (Mg) plays a vital role in photosynthesis, dry matter production and carbon partitioning in sink organs. Hence, four permanent manurial experiments (20–27 years of duration) under the auspices of All India Coordinated Research Project for Dryland Agriculture (AICRPDA) network centres across diverse agro-ecological regions were carried out to examine the soil exchangeable Mg (ex-Mg), crop uptake and overall Mg balance. Groundnut (peanut), finger millet, rice–lentil sequence and post rainy sorghum were the major crops or cropping systems followed in four permanent manure experiments at Anantapuram, Bengaluru, Varanasi and Solapur, respectively. Nutrient management in all experiments involved control (no addition of nutrients), 100% organic, 100% chemical, and integration of organic and chemical. Except in the finger millet-based system, mean ex-Mg status in the entire profile was higher than the sufficiency level (1.0 cmol(+) kg–1 as a critical limit). Status of ex-Mg (cmol(+) kg–1 soil) in soil profiles was in the order: Solapur (3.80) > Varanasi (2.07) > Anantapuram (1.06) > Bengaluru (0.44). A uniform distribution of ex-Mg was observed in plots that received integrated application of organic and chemical fertilisers. In general, improved status of profile ex-Mg (cmol(+) kg–1) over the control was observed in soils under groundnut (0.19–0.78), finger millet (1.90–3.20), and post rainy sorghum (6.50–7.60, except 4.20 in 100% NPK) cropping. Overall, ex-Mg status and balance of different soil types under diverse crop production systems was influenced by several factors, some of which include soil type with varying mineralogy, particle size distribution, nutrient management strategies and rainfall. Significant positive relationships were observed between ex-Mg status and clay content (R2 = 0.94), soil pH (R2 = 0.92), cation exchange capacity (R2 = 0.98) and mean air temperature (R2 = 0.22), whereas a weak relationship was observed with rainfall (R2 = 0.01). The study gives an account of Mg balance in major Indian soil types and recommends further attention on Mg nutrition in current intensive agriculture.


2019 ◽  
Vol 20 (3) ◽  
pp. 180-186
Author(s):  
Eric O. Manyasa ◽  
Pangirayi Tongoona ◽  
Paul Shanahan ◽  
Stephen Githiri ◽  
Henry Ojulong ◽  
...  

Finger millet blast, caused by Magnaporthe grisea, is the most important disease of finger millet in East Africa. Diseased plants are significantly less productive, and most cultivars grown by farmers are susceptible to the disease. Fungicide application is an option for disease management; however, smallholder farmers cannot afford the cost. Host plant resistance is therefore the most viable option for managing the disease. Eighty-one finger millet germplasm accessions from East Africa were evaluated for resistance to blast disease, in natural and inoculated trials. Three accessions (G18, G43, and G67) were identified as resistant to all the three progressive stages of blast: leaf, neck, and panicle. However, one (G3) and four (G15, G16, G60, and G70) accessions were only resistant to leaf and neck blast, respectively. Two resistant (G39 and G43) and 12 moderately resistant (G3, G7, G11, G20, G23, G27, G31, G33, G36, G66, G74, and G81) accessions to blast attained grain yields >2.0 t/ha. These accessions varied in time to maturity, plant height, and grain color, which will enable farmers to select accessions appropriate to their target agro-ecological zones and desired end uses. East African finger millet germplasm has high potential as a source of blast-resistant accessions that could be evaluated for direct production and/or for blast-resistance breeding.


Author(s):  
Chandrashekhar Angadi ◽  
A. Mohan Rao ◽  
S. Ramesh ◽  
P. Ravishankar ◽  
A. Nagaraja ◽  
...  

2019 ◽  
pp. 61-67

Recognition of high yielding and nitrogen (N) fixing groundnut genotypes and desegregating them in the cereal-based cropping systems common in savannah regions will enhance food security and reduce the need for high N fertilizers hence, minimize the high cost and associated environmental consequences. Field trials were conducted during the 2015 growing season at the Research Farms of Bayero University Kano (BUK) and Institute for Agricultural Research (IAR), Ahmadu Bello University, Samaru-Zaria to assess the yield potential and Biolog- ical N fixation in 15 groundnut genotypes (ICG 4729, ICGV-IS 07823, ICGV-IS 07893, ICGV-IS 07908, ICGV- SM 07539, ICGV- SM 07599, ICGV-IS 09926, ICGV-IS 09932, ICGV-IS 09992, ICGV-IS 09994, SAMNUT-21, SAMNUT-22, SAMNUT-25, KAMPALA and KWANKWAS). The groundnut genotypes and reference Maize crop (SAMMAZ 29) were planted in a randomized complete block design in three replications. N difference method was used to estimate the amount of N fixed. The parameters determined were the number of nodules, nod- ule dry weight, shoot and root dry weights, pod, and haulm yield as well as N fixation. The nodule dry weight, BNF, haulm, and pod yield were statistically significant (P<0.01) concerning genotype and location. Similarly, their interac- tion effect was also highly significant. ICGV-IS 09926 recorded the highest nod- ule dry weight of 2.07mg /plant across the locations while ICGV-IS 09932 had the highest BNF value of 140.27Kg/ha. Additionally, KAMPALA had the high- est haulm yield, while ICGV-IS 07893 had the highest pod yield across the loca- tions with a significant interaction effect. The result shows that ICGV-IS 07893 and ICGV-IS 09932, as well as ICGV-IS 09994 and SAMNUT – 22, were the best genotypes concerning BNF, haulm and pod yield in the Northern Guinea and Sudan Savannahs of Nigeria respectively with the potential for a corresponding beneficial effect.


2007 ◽  
Vol 99 (4) ◽  
pp. 904-911 ◽  
Author(s):  
D. L. Tanaka ◽  
J. M. Krupinsky ◽  
S. D. Merrill ◽  
M. A. Liebig ◽  
J. D. Hanson

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1534
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Chandrakant Tiwari ◽  
Shalini Purwar ◽  
Mukul Kumar ◽  
...  

Drought stress is considered a severe threat to crop production. It adversely affects the morpho-physiological, biochemical and molecular functions of the plants, especially in short duration crops like mungbean. In the past few decades, significant progress has been made towards enhancing climate resilience in legumes through classical and next-generation breeding coupled with omics approaches. Various defence mechanisms have been reported as key players in crop adaptation to drought stress. Many researchers have identified potential donors, QTLs/genes and candidate genes associated to drought tolerance-related traits. However, cloning and exploitation of these loci/gene(s) in breeding programmes are still limited. To bridge the gap between theoretical research and practical breeding, we need to reveal the omics-assisted genetic variations associated with drought tolerance in mungbean to tackle this stress. Furthermore, the use of wild relatives in breeding programmes for drought tolerance is also limited and needs to be focused. Even after six years of decoding the whole genome sequence of mungbean, the genome-wide characterization and expression of various gene families and transcriptional factors are still lacking. Due to the complex nature of drought tolerance, it also requires integrating high throughput multi-omics approaches to increase breeding efficiency and genomic selection for rapid genetic gains to develop drought-tolerant mungbean cultivars. This review highlights the impact of drought stress on mungbean and mitigation strategies for breeding high-yielding drought-tolerant mungbean varieties through classical and modern omics technologies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Debayan Mondal ◽  
Prudveesh Kantamraju ◽  
Susmita Jha ◽  
Gadge Sushant Sundarrao ◽  
Arpan Bhowmik ◽  
...  

AbstractIndigenous folk rice cultivars often possess remarkable but unrevealed potential in terms of nutritional attributes and biotic stress tolerance. The unique cooking qualities and blissful aroma of many of these landraces make it an attractive low-cost alternative to high priced Basmati rice. Sub-Himalayan Terai region is bestowed with great agrobiodiversity in traditional heirloom rice cultivars. In the present study, ninety-nine folk rice cultivars from these regions were collected, purified and characterized for morphological and yield traits. Based on traditional importance and presence of aroma, thirty-five genotypes were selected and analyzed for genetic diversity using micro-satellite marker system. The genotypes were found to be genetically distinct and of high nutritive value. The resistant starch content, amylose content, glycemic index and antioxidant potential of these genotypes represented wide variability and ‘Kataribhog’, ‘Sadanunia’, ‘Chakhao’ etc. were identified as promising genotypes in terms of different nutritional attributes. These cultivars were screened further for resistance against blast disease in field trials and cultivars like ‘Sadanunia’, ‘T4M-3-5’, ‘Chakhao Sampark’ were found to be highly resistant to the blast disease whereas ‘Kalonunia’, ‘Gobindabhog’, ‘Konkanijoha’ were found to be highly susceptible. Principal Component analysis divided the genotypes in distinct groups for nutritional potential and blast tolerance. The resistant and susceptible genotypes were screened for the presence of the blast resistant pi genes and association analysis was performed with disease tolerance. Finally, a logistic model based on phenotypic traits for prediction of the blast susceptibility of the genotypes is proposed with more than 80% accuracy.


Sign in / Sign up

Export Citation Format

Share Document