scholarly journals Constructiv and Technological Consideration on the Generation of Gear Made by the DLP 3D-Printed Methode

2019 ◽  
Vol 56 (2) ◽  
pp. 440-443
Author(s):  
Mircea Dorin Vasilescu

The aim of the work is conduct to highlight how the technological parameters has influence of 3D printed DLP on the generation of wheel, made from resin type material. In the first part of the paper is presents how to generate in terms of dimensional aspects specific design cylindrical gears, conical and worm gear. Generating elements intended to reduce the cost of manufacturing of these elements. Also are achieve the specific components of this work are put to test with a laboratory test stand which is presented in the paper in the third part of the paper. The tested gears generated by 3D-printed technique made with 3D printed with FDM or DLP technique. After the constructive aspects, proceed to the identification of conserved quantities, which have an impact both in terms of mechanical strength, but his cinematic, in order to achieve a product with kinematic features and good functional domain specific had in mind. The next part is carried out an analysis of the layers are generated using the DLP and FDM method using an optical microscope with magnification up to 500 times, specially adapted in order to achieve both visualization and measurement of specific elements. In the end part, it will highlight the main issues and the specific recommendations made to obtain such constructive mechanical elements.

2020 ◽  
Author(s):  
Mario Salguedo ◽  
Guillermo Zarate ◽  
Robert H. Gilman ◽  
Germán Comina ◽  
Jorge Coronel ◽  
...  

AbstractBackgroundThe MODS is an important assay for early diagnosis of tuberculosis and drug susceptibility. MODS is based in the microscopic observation, underneath, of the characteristic cords of Mycobacterium tuberculosis colonies grown in liquid media. An inverted optical microscope is required to observe and interpret MODS cultures. Unfortunately, the cost of commercial inverted microscopes is not affordable in low resource settings in developing countries.MethodologyTo perform a diagnosis of tuberculosis using the MODS assay, images with modest quality are enough for proper interpretation. Therefore, the use of a high cost commercial inverted optical microscope is not indispensable. In this study, we designed a prototype of an optical inverted microscope created with a 3D printer and based on a smartphone. The system was evaluated by comparison of manual interpretations of 226 TB positive MODS culture images and 207 negative MODS culture images.SignificanceThe prototype resulted in a low-cost inverted optical microscope, with simple functioning, and whose parts have been manufactured using 3D printing techniques. The quality of the images was good enough and achieved a 100% concordance between the manual inspection with the developed microscope, and the standard diagnostics of MODS.


2019 ◽  
Vol XXII (1) ◽  
pp. 289-296
Author(s):  
Vasilescu M. D.

The paper takes into account the specific process of generation and parameters setting of 3D printing process DLP (Digital Light Processing) which have an influence on the characteristics of planar surface of the parts. In the first part of the paper the study is conduct to determinate the parameters which can influence the process of implementation of flat surfaces pieces with 3D DLP process printing. In this part there is and a comparison with the method of generating the marker method 3D printing FDM (Fuse Deposit Modelling). It has chosen this solution because on the one hand the cost of parts are medium, as well as generating principle is relatively simple in terms of technological point of view, but as well as the accuracy and quality of surface generation made with this printing is much better than that provided by the process of asking for a comparison is made. Analysis of the surface will be done so about using an optical microscope with a magnification of 0-500 times, and by means of an electronic measure for dimensional parts as well as for spatial areas of the deviations generated. In it also make references to the methodology of generating flat surfaces and to influence the way their generation characteristics of the parts generated by the 3D printing process type DLP. It should be pointed out that from the perspective of the characteristics of the surfaces generated in literature there are few references in this direction being those areas indicated in the area, as well as acting, although the products have engineering applications.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2913
Author(s):  
Rafał Gołębski ◽  
Piotr Boral

Classic methods of machining cylindrical gears, such as hobbing or circumferential chiseling, require the use of expensive special machine tools and dedicated tools, which makes production unprofitable, especially in small and medium series. Today, special attention is paid to the technology of making gears using universal CNC (computer numerical control) machine tools with standard cheap tools. On the basis of the presented mathematical model, a software was developed to generate a code that controls a machine tool for machining cylindrical gears with straight and modified tooth line using the multipass method. Made of steel 16MnCr5, gear wheels with a straight tooth line and with a longitudinally modified convex-convex tooth line were machined on a five-axis CNC milling machine DMG MORI CMX50U, using solid carbide milling cutters (cylindrical and ball end) for processing. The manufactured gears were inspected on a ZEISS coordinate measuring machine, using the software Gear Pro Involute. The conformity of the outline, the tooth line, and the gear pitch were assessed. The side surfaces of the teeth after machining according to the planned strategy were also assessed; the tests were carried out using the optical microscope Alicona Infinite Focus G5 and the contact profilographometer Taylor Hobson, Talysurf 120. The presented method is able to provide a very good quality of machined gears in relation to competing methods. The great advantage of this method is the use of a tool that is not geometrically related to the shape of the machined gear profile, which allows the production of cylindrical gears with a tooth and profile line other than the standard.


2018 ◽  
Vol 24 (8) ◽  
pp. 1337-1346 ◽  
Author(s):  
Marzio Grasso ◽  
Lyes Azzouz ◽  
Paula Ruiz-Hincapie ◽  
Mauro Zarrelli ◽  
Guogang Ren

Purpose Recent advancements of 3D printing technology have brought forward the interest for this technique in many engineering fields. This study aims to focus on mechanical properties of the polylactic acid (PLA) feeding material under different thermal conditions for a typical fusion deposition of 3D printer system. Design/methodology/approach Specimens were tested under static loading within the range 20ºC to 60ºC considering different infill orientations. The combined effect of temperature and filament orientation is investigated in terms of constitutive material parameters and final failure mechanisms. The difference between feeding system before and post-3D printing was also assessed by mechanical test on feeding filament to verify the thermal profile during the deposition phase. Findings The results in terms of Young’s modulus, ultimate tensile strength (UTS), strain at failure (εf) and stress at failure (σf) are presented and discussed to study the influence of process settings over the final deposited material. Fracture surfaces have been investigated using an optical microscope to link the phenomenological interpretation of the failure with the micro-mechanical behaviour. Experimental results show a strong correlation between stiffness and strength with the infill orientation and the temperature values. Moreover, a relevant effect is related to deformed geometry of the filament approaching glass transition region of the polymer according to the deposition orientation. Research limitations/implications The developed method can be applied to optimise the stiffness and strength of any 3D-printed composite according to the infill orientation. Practical implications To avoid the failure of specimens outside the gauge length, a previously proposed modification to the geometry was adopted. The geometry has a parabolic profile with a curvature of 1,000 mm tangent to the middle part of the specimen. Originality/value Several authors have reported the stiffness and strength of 3D-printed parts under static and ambient temperature for different build parameters. However, there is a lack of literature on the combination of the latter with the temperature effects on the mechanical properties which this paper covers.


2020 ◽  
Vol 4 (157) ◽  
pp. 7-11
Author(s):  
V. Zhvan ◽  
V. Donenko ◽  
S. Kulish ◽  
A. Taran

The article is devoted to the effective analysis of trench and trenchless pipeline laying technologies. In the course of the work, an analytical review of pipeline assembly was performed, the main technological parameters, the scope of each method, and their advantages and disadvantages were determined. List of considered pipeline laying methods: trenching, horizontal directional drilling, mechanical puncture, hydraulic puncture, microtunneling and punching. The article analyzes the classical trench method and the most widely used trenchless ones: horizontal directional drilling; mechanical puncture; hydraulic puncture; microtunneling; punching. Each of these methods has several advantages and disadvantages. The choice of the optimal method of laying the pipeline depends on many factors: the physical and mechanical properties of soils and hydrogeological conditions, the length and diameter of the pipeline, the presence of other communications, buildings and structures, as well as the budget that customers have. Work time is the last deciding factor. Based on the results of the analysis of pipeline laying technologies and expert survey of construction industry experts, the cost table of each method was compiled, outlining the main characteristics of the technology: length of pipeline, speed of work, scope, cost, and the advantages and disadvantages of each of the considered methods. The conclusions about the use of each of the pipeline laying methods were made. Each of the methods has its advantages and disadvantages, so to choose the method of work it is necessary to conduct a comprehensive assessment of technological parameters, cost, scope and timing of work. The cost of lay-ing the pipeline consists of the following factors: conducting research; selection of diameter and determination of pipeline length; choice of laying method and equipment necessary for the works; selection of equipment, shut-off and control equipment and other materials arranged on the pipeline; terms of performance of works. Taking into account these factors, an estimate is made, which determines the cost of installation of a particular pipeline. After the analysis, we can conclude that among the methods of trenchless laying of pipelines can be identi-fied horizontally directional drilling, it is this method of laying the pipeline will be appropriate to use for our region. The drilling technique allows to carry out pipelines under obstacles, to pull long segments of networks, to repair site damage. This method is universal and can be used in almost any environment. Keywords: trenches, horizontal directional drilling, mechanical puncture, hydraulic piercing, microtunnelling, punching, pipeline.


2021 ◽  
pp. 50-54
Author(s):  
Nor Aiman Sukindar ◽  
Noorazizi Mohd Samsuddin ◽  
Sharifah Imihezri Bt. Syed Shaharuddin ◽  
Shafie Kamaruddin ◽  
Ahmad Zahirani Ahmad Azhar ◽  
...  

This project involves the implementation of 3D printing technology on designing and fabricating food holders in the food industry. Food holders are designed to hold the food packages in the filling line for food manufacturing industries that apply retort technology. Therefore, this study aims to implement the 3D printing technology in particular FDM to fabricate food holders for the food processing industry. The approach of using this technology is focused on giving more view on the capability of 3D printing technology, aiming at reducing the overall process fabrication cost and fabrication time. Hence, the fabrication cost and time between FDM and conventional machining methods were compared. This study revealed that Organic Gain food industry was able to reduce the cost and fabrication time for the food holder up to approximately 96.3% and 72% respectively. This project gives an insight into the ability of 3D printing technology in delivering the demands of the industry in producing parts as well as the adaptability of the technology to the industry in new product development. The project was carried out successfully and the 3D printed food holder has been tested and functions smoothly.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8010
Author(s):  
Ismail Butun ◽  
Yusuf Tuncel ◽  
Kasim Oztoprak

This paper investigates and proposes a solution for Protocol Independent Switch Architecture (PISA) to process application layer data, enabling the inspection of application content. PISA is a novel approach in networking where the switch does not run any embedded binary code but rather an interpreted code written in a domain-specific language. The main motivation behind this approach is that telecommunication operators do not want to be locked in by a vendor for any type of networking equipment, develop their own networking code in a hardware environment that is not governed by a single equipment manufacturer. This approach also eases the modeling of equipment in a simulation environment as all of the components of a hardware switch run the same compatible code in a software modeled switch. The novel techniques in this paper exploit the main functions of a programmable switch and combine the streaming data processor to create the desired effect from a telecommunication operator perspective to lower the costs and govern the network in a comprehensive manner. The results indicate that the proposed solution using PISA switches enables application visibility in an outstanding performance. This ability helps the operators to remove a fundamental gap between flexibility and scalability by making the best use of limited compute resources in application identification and the response to them. The experimental study indicates that, without any optimization, the proposed solution increases the performance of application identification systems 5.5 to 47.0 times. This study promises that DPI, NGFW (Next-Generation Firewall), and such application layer systems which have quite high costs per unit traffic volume and could not scale to a Tbps level, can be combined with PISA to overcome the cost and scalability issues.


Author(s):  
R. Grant Reed ◽  
Robert H. Sturges

Abstract We consider a design advisor to be performance-intelligent when its suggestions do not conflict with high level performance-related goals of the design under study. We address the problem of representing non-domain-specific design Information at a high level and describe coupling it to the inputs and outputs of design critics and their suggestion mechanisms. High level design Information represented in a function-based structure with linked allocations is shown to interact with a domain-specific design critic in three instances, viz.: allocation refinement, goal matching with a supported function, and performance-intelligent tradeoffs. Examples of manual and computer-based procedures are discussed.


2021 ◽  
Vol 1023 ◽  
pp. 75-81
Author(s):  
Aappo Mustakangas ◽  
Atef Hamada ◽  
Antti Järvenpää

Cost-efficient 3D-printing can create a lot of new opportunities in engineering as it enables rapid prototyping of models and functional parts. In the present study, Polylactic acid (PLA) cubic specimens with different types of infill patterns (IPs), rectilinear, grid and cuboid, were additively manufactured by Fused Filament Fabrication 3D-printing. The PLA cubes are fabricated with one perimeter and different IPs density (10, 20, and 30%). Subsequently, the compressive strengths of the PLA materials were measured in two loading directions, i.e., the layers building direction is parallel (PD) to the loading axis and perpendicular (ND) to the loading direction. An optical microscope was used to examine the deformed IPs in both loading directions. The compressive flow stress curves of the PLA cubes infilled with rectilinear and grid patterns exhibited strong fluctuations with lower compressive strengths in the loading direction along ND. The PLA with 30% grid IP revealed a superior strength of ~12 kN in the loading direction along PD. On the contrary, the same material exhibited a worst compressive strength 3 kN along ND.


Sign in / Sign up

Export Citation Format

Share Document