scholarly journals Potential antioxidant effect of fruit peels for human use from northern Peru, compared by 5 different methods

Author(s):  
Mayar L. Ganoza-Yupanqui ◽  
◽  
Amner Muñoz-Acevedo ◽  
Roberto O. Ybañez-Julca ◽  
Elena Mantilla-Rodriguez ◽  
...  

The objective of the work was to determine the antioxidant potential in vitro of freeze-dried peel extracts of 20 fruits from the northern region of Peru through five tests (Folin-Ciocalteu, DPPH., ABTS+., FRAP and CUPRAC). According to multivariate statistical analyzes, five groups were found: (i.) peel extracts with the highest values of antioxidant capacity (AC) from custard apple, and star fruit; (ii.) rind extracts with high AC values from quince, sweet granadilla, guava, and black grape; (iii.) husk extracts with middle values of AC from passion fruit, and red mombin; (iv.) shell extracts with low AC values from tangerine, mandarine, and bitter orange; and, (v.) coating extracts with the lowest AC values from pawpaw, red pawpaw, muskmelon, dragon fruit, yellow and red indian figs, pear, apple, and green grape. To conclude, the fruit lyophilized-husk extracts of custard apple, star fruit, quince, sweet granadilla, guava, and black grape obtained the best AC.

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7189
Author(s):  
Yue Li ◽  
Pei Li ◽  
Kailin Yang ◽  
Qian He ◽  
Yue Wang ◽  
...  

Sea buckthorn berries are rich in bioactive compounds and can be used for medicine and food. The variety and drying method used have an important influence on quality. In this study, different sea buckthorn varieties from China were selected and dried with four common drying methods. The total phenolic content (TPC), total flavonoids content (TFC), contents of 12 phenolic compounds and antioxidant capacity in vitro were analyzed. The results showed that the TPC, TFC and antioxidant activity of two wild sea buckthorn berries were higher than those of three cultivated berries, and for the same varieties, measured chemical contents and antioxidant activity of the freeze-dried fruit were significantly higher than those obtained with three conventional drying methods. In addition, forty-one compounds in sea buckthorn berry were identified by UPLC-PDA-Q/TOF-MS, most of which were isorhamnetin derivatives. Multivariate statistical analysis revealed narcissin and isorhamnetin-3-O-glucoside varied significantly in sea buckthorn berries of different varieties and with different drying methods; they were potential quality markers. Strong correlations were found between TPC, gallic acid and antioxidant capacity (p < 0.05). The results revealed how components and antioxidant activity varied in different sea buckthorn, which provides a valuable reference for quality control and further development and utilization of sea buckthorn.


Author(s):  
N.K.R. Smith ◽  
K.E. Hunter ◽  
P. Mobley ◽  
L.P. Felpel

Electron probe energy dispersive x-ray microanalysis (XRMA) offers a powerful tool for the determination of intracellular elemental content of biological tissue. However, preparation of the tissue specimen , particularly excitable central nervous system (CNS) tissue , for XRMA is rather difficult, as dissection of a sample from the intact organism frequently results in artefacts in elemental distribution. To circumvent the problems inherent in the in vivo preparation, we turned to an in vitro preparation of astrocytes grown in tissue culture. However, preparations of in vitro samples offer a new and unique set of problems. Generally, cultured cells, growing in monolayer, must be harvested by either mechanical or enzymatic procedures, resulting in variable degrees of damage to the cells and compromised intracel1ular elemental distribution. The ultimate objective is to process and analyze unperturbed cells. With the objective of sparing others from some of the same efforts, we are reporting the considerable difficulties we have encountered in attempting to prepare astrocytes for XRMA.Tissue cultures of astrocytes from newborn C57 mice or Sprague Dawley rats were prepared and cultured by standard techniques, usually in T25 flasks, except as noted differently on Cytodex beads or on gelatin. After different preparative procedures, all samples were frozen on brass pins in liquid propane, stored in liquid nitrogen, cryosectioned (0.1 μm), freeze dried, and microanalyzed as previously reported.


2020 ◽  
Vol 17 (3) ◽  
pp. 207-217
Author(s):  
Eman A. Hakeem ◽  
Galal M. El-Mahrouk ◽  
Ghada Abdelbary ◽  
Mahmoud H. Teaima

Background: Clopidogrel (CLP) suffers from extensive first pass metabolism results in a negative impact on its oral systemic bioavailability. Cubosomes are Lyotropic Liquid Crystalline (LLC) nano-systems comprising monoolein, a steric stabilizer and an aqueous system, it considered a promising carrier for different pharmaceutical compounds. Box-Behnken Design (BBD) is an efficient tool for process analysis and optimization skipping forceful treatment combinations. Objective: The study was designed to develop freeze-dried clopidogrel loaded LLC (cubosomes) for enhancement of its oral bioavailability. Methods: A 33 BBD was adopted, the studied independent factors were glyceryl monooleate (GMO lipid phase), Pluronic F127 (PL F127steric stabilizer) and polyvinyl alcohol powder (stabilizer). Particle Size (PS), Polydispersity Index (PDI) and Zeta Potential (ZP) were set as independent response variables. Seventeen formulae were prepared in accordance with the bottom up approach and in-vitro evaluated regarding PS, PDI and ZP. Statistical analysis and optimization were achieved using design expert software®, then the optimum suggested formula was prepared, in-vitro revaluated, freeze-dried with 3% mannitol (cryoprotectant), solid state characterized and finally packed in hard gelatin capsule for comparative in-vitro release and in-vivo evaluation to Plavix®. Results: Results of statistical analysis of each individual response revealed a quadratic model for PS and PDI where a linear model for ZP. The optimum suggested formula with desirability factor equal 0.990 consisting of (200 mg GMO, 78.15 mg PL F127 and 2% PVA). LC/MS/MS study confirmed significant higher C>max, AUC>0-24h and AUC>0-∞ than that of Plavix®. Conclusion: The results confirm the capability of developed carrier to overcome the low oral bioavailability.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 845
Author(s):  
Candace Goodman ◽  
Katrina N. Lyon ◽  
Aitana Scotto ◽  
Cyra Smith ◽  
Thomas A. Sebrell ◽  
...  

Helicobacter pylori infection is commonly treated with a combination of antibiotics and proton pump inhibitors. However, since H. pylori is becoming increasingly resistant to standard antibiotic regimens, novel treatment strategies are needed. Previous studies have demonstrated that black and red berries may have antibacterial properties. Therefore, we analyzed the antibacterial effects of black and red raspberries and blackberries on H. pylori. Freeze-dried powders and organic extracts from black and red raspberries and blackberries were prepared, and high-performance liquid chromatography was used to measure the concentrations of anthocyanins, which are considered the major active ingredients. To monitor antibiotic effects of the berry preparations on H. pylori, a high-throughput metabolic growth assay based on the Biolog system was developed and validated with the antibiotic metronidazole. Biocompatibility was analyzed using human gastric organoids. All berry preparations tested had significant bactericidal effects in vitro, with MIC90 values ranging from 0.49 to 4.17%. Antimicrobial activity was higher for extracts than powders and appeared to be independent of the anthocyanin concentration. Importantly, human gastric epithelial cell viability was not negatively impacted by black raspberry extract applied at the concentration required for complete bacterial growth inhibition. Our data suggest that black and red raspberry and blackberry extracts may have potential applications in the treatment and prevention of H. pylori infection but differ widely in their MICs. Moreover, we demonstrate that the Biolog metabolic assay is suitable for high-throughput antimicrobial susceptibility screening of H. pylori.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Johana Muchová ◽  
Vanessa Hearnden ◽  
Lenka Michlovská ◽  
Lucie Vištejnová ◽  
Anna Zavaďáková ◽  
...  

AbstractIn a biological system, nanoparticles (NPs) may interact with biomolecules. Specifically, the adsorption of proteins on the nanoparticle surface may influence both the nanoparticles' and proteins' overall bio-reactivity. Nevertheless, our knowledge of the biocompatibility and risk of exposure to nanomaterials is limited. Here, in vitro and ex ovo biocompatibility of naturally based crosslinked freeze-dried 3D porous collagen/chitosan scaffolds, modified with thermostable fibroblast growth factor 2 (FGF2-STAB®), to enhance healing and selenium nanoparticles (SeNPs) to provide antibacterial activity, were evaluated. Biocompatibility and cytotoxicity were tested in vitro using normal human dermal fibroblasts (NHDF) with scaffolds and SeNPs and FGF2-STAB® solutions. Metabolic activity assays indicated an antagonistic effect of SeNPs and FGF2-STAB® at high concentrations of SeNPs. The half-maximal inhibitory concentration (IC50) of SeNPs for NHDF was 18.9 µg/ml and IC80 was 5.6 µg/ml. The angiogenic properties of the scaffolds were monitored ex ovo using a chick chorioallantoic membrane (CAM) assay and the cytotoxicity of SeNPs over IC80 value was confirmed. Furthermore, the positive effect of FGF2-STAB® at very low concentrations (0.01 µg/ml) on NHDF metabolic activity was observed. Based on detailed in vitro testing, the optimal concentrations of additives in the scaffolds were determined, specifically 1 µg/ml of FGF2-STAB® and 1 µg/ml of SeNPs. The scaffolds were further subjected to antimicrobial tests, where an increase in selenium concentration in the collagen/chitosan scaffolds increased the antibacterial activity. This work highlights the antimicrobial ability and biocompatibility of newly developed crosslinked collagen/chitosan scaffolds involving FGF2-STAB® and SeNPs. Moreover, we suggest that these sponges could be used as scaffolds for growing cells in systems with low mechanical loading in tissue engineering, especially in dermis replacement, where neovascularization is a crucial parameter for successful skin regeneration. Due to their antimicrobial properties, these scaffolds are also highly promising for tissue replacement requiring the prevention of infection.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 49-50
Author(s):  
Kevin S Jerez Bogota ◽  
Tofuko A Woyengo

Abstract A study was conducted to determine the effects of the period of predigesting whole stillage (WS; slurry material that is dried into DDGS) with multi-enzyme and composition of the multi-enzyme on porcine in vitro digestibility of dry matter (IVDDM) of the WS. Four samples of whole stillage from 4 different sources were freeze-dried and divided into 13 subsamples to give 52 sub-samples. Thirteen treatments were applied to the 48 sub-samples within source. The treatments were undigested WS (control); or pre-digested with 1 of 3 multi-enzymes (MTE1, MTE2, and MTE3) at 55 °C for 6, 12, 18 or 24 h in 3 × 4 factorial arrangement. The MTE1 contained xylanase, β-glucanase, cellulase, mannanase, protease, and amylase; MTE2 contained xylanase, α-galactosidase, and cellulase; and MTE3 contained xylanase, cellulase, β-glucanase, and mannanase. The 52 subsamples were subjected to porcine in vitro digestion. The IVDDM of untreated WS was 73.3%. The IVDDM increased (P&lt; 0.05) with an increase in the predigestion period. However, a rise in the predigestion period from 0 to 12 h resulted in greater (P&lt; 0.05) response in mean IVDDM than an increment in the predigestion period from 12 to 24 h (11 vs. 0.83 percentage points). Predigestion period and multi-enzyme type interacted on IVDDM such that the improvement in IVDDM between 0 and 12 hours of predigestion differed (P&lt; 0.05) among the 3 multi-enzyme types (13.3, 11.1, and 8.5 percentage points for MTE3, MTE2, and MTE1, respectively). The LS means by multi-enzyme treatment were modeled and resulted in unparallel curves (P&lt; 0.05). The estimated maximum response of IVDDM for MTE1, MTE2 and MTE 3 were 82.4%, 84.7% and 87.1% at 15.8, 13 and 13.1 hours, respectively. In conclusion, the optimal time of predigestion of WS with multi-enzymes (with regard to improvement in its IVDDM) was approximately 14 h.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 614
Author(s):  
Manoj Kumar ◽  
Sushil Changan ◽  
Maharishi Tomar ◽  
Uma Prajapati ◽  
Vivek Saurabh ◽  
...  

Annona squamosa L. (custard apple) belongs to the family Annonaceae and is an important tropical fruit cultivated in the West Indies, South and Central America, Ecuador, Peru, Brazil, India, Mexico, the Bahamas, Bermuda, and Egypt. Leaves of custard apple plants have been studied for their health benefits, which are attributed to a considerable diversity of phytochemicals. These compounds include phenol-based compounds, e.g., proanthocyanidins, comprising 18 different phenolic compounds, mainly alkaloids and flavonoids. Extracts from Annona squamosa leaves (ASLs) have been studied for their biological activities, including anticancer, antidiabetic, antioxidant, antimicrobial, antiobesity, lipid-lowering, and hepatoprotective functions. In the current article, we discussed the nutritional and phytochemical diversity of ASLs. Additionally, ASL extracts were discussed with respect to their biological activities, which were established by in vivo and in vitro experiments. A survey of the literature based on the phytochemical profile and health-promoting effects of ASLs showed that they can be used as potential ingredients for the development of pharmaceutical drugs and functional foods. Although there are sufficient findings available from in vitro and in vivo investigations, clinical trials are still needed to determine the exact effects of ASL extracts on human health.


Zygote ◽  
2007 ◽  
Vol 15 (1) ◽  
pp. 15-24 ◽  
Author(s):  
M. Nakai ◽  
N. Kashiwazaki ◽  
A. Takizawa ◽  
N. Maedomari ◽  
M. Ozawa ◽  
...  

SUMMARYSuccessful offspring production after intracytoplasmic injection of freeze-dried sperm has been reported in laboratory animals but not in domesticated livestock, including pigs. The integrity of the DNA in the freeze-dried sperm is reported to affect embryogenesis. Release of endonucleases from the sperm is one of the causes of induction of sperm DNA fragmentation. We examined the effects of chelating agents, which inhibit the activation of such enzymes, on DNA fragmentation in freeze-dried sperm and on the in vitro and in vivo developmental ability of porcine oocytes following boar sperm head injection. Boar ejaculated sperm were sonicated, suspended in buffer supplemented with (1) 50 mM EGTA, (2) 50 mM EDTA, (3) 10 mM EDTA, or (4) no chelating agent and freeze-dried. A fertilization medium (Pig-FM) was used as a control. The rehydrated spermatozoa in each group were then incubated in Pig-FM at room temperature. The rate of DNA fragmentation in the control group, as assessed by the TUNEL method, increased gradually as time after rehydration elapsed (2.8% at 0 min to 12.2% at 180 min). However, the rates in all experimental groups (1–4) did not increase, even at 180 min (0.7–4.1%), which were all significantly lower (p < 0.05) than that of the control group. The rate of blastocyst formation after the injection in the control group (6.0%) was significantly lower (p < 0.05) than those in the 50 mM EGTA (23.1%) and 10 mM EDTA (22.6%) groups incubated for 120–180 min. The average number of blastocyst cells in the 50 mM EGTA group (33.1 cells) was significantly higher (p < 0.05) than that in the 10 mM EDTA group (17.8 cells). Finally, we transferred oocytes from 50 mM EGTA or control groups incubated for 0–60 min into estrous-synchronized recipients. The two recipients of the control oocytes became pregnant and one miscarried two fetuses on day 39.The results suggested that fragmentation of DNA in freeze-dried boar sperm is one of the causes of decreased in vitro developmental ability of injected oocytes to the blastocyst stage. Supplementation with EGTA in a freeze-drying buffer improves this ability.


Sign in / Sign up

Export Citation Format

Share Document