scholarly journals Identification of RBC and WBC Count in Human Blood Using ARM Based Instrumentation

2015 ◽  
Vol 11 (1) ◽  
pp. 145-150
Author(s):  
B. Basavanagoud ◽  
K. Priya

The rapid growth in microelectronics and crunching RISC in the field of bio-medical sciences incorporated of soft tools to diagnose various parameters of human fluids. Conventional method of blood sample analysis makes use of laboratory technique of titration, which is operator-dependent and results in lot of errors depending on the skill of the technician. In order to eliminate the human errors involved in the conventional method, in this paper an attempt has been made to present a capillary centrifuge technique driven by high speed DC motor fed by Morgan chopper and controlled by powerful ARM processor. It results in accurate analysis of the blood samples. The various techniques involved in accurate sensing of speed using timer and generation of firing pulses to thyristor in the Morgan chopper is judiciously achieved. This paper clearly brings out the advantages of the proposed blood measurement technique which effectively gives blood analysis faster and at a low cost.

Oscilloscopes are indispensable tools for anyone designing, manufacturing or repairing electronic equipment. In today’s fast-paced world, engineers need the best tools available to solve their measurement challenges quickly and accurately. As the eyes of the engineer, oscilloscopes are the key to meeting today’s demanding measurement challenges. There are many types of oscilloscope available in the market. The main types of oscilloscopes are analog oscilloscope, digital oscilloscope and PC based oscilloscope. From which the digital oscilloscope are widely used now a days due there accuracy portability, high speed, high resolution, data storing capability etc. here we provide an alternative solution which is basically a digital oscilloscope with almost all the control options which any standard digital oscilloscope has. This paper describes the development of a portable, very low cost oscilloscope. The user can start/stop the display, adjust the time division and adjust the voltage division. The features of this device make it suitable for implementing as an educational re-source for graduate students from Electrical, Electronics, Instrumentation, and Computer Science faculties.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (2) ◽  
pp. 17-25
Author(s):  
JUNMING SHU ◽  
ARTHAS YANG ◽  
PEKKA SALMINEN ◽  
HENRI VAITTINEN

The Ji’an PM No. 3 is the first linerboard machine in China to use multilayer curtain coating technology. Since successful startup at the end of 2011, further development has been carried out to optimize running conditions, coating formulations, and the base paper to provide a product with satisfactory quality and lower cost to manufacture. The key challenges include designing the base board structure for the desired mechanical strength, designing the surface properties for subsequent coating operations, optimizing the high-speed running of the curtain coater to enhance production efficiency, minimizing the amount of titanium dioxide in the coating color, and balancing the coated board properties to make them suitable for both offset and flexographic printing. The pilot and mill scale results show that curtain coating has a major positive impact on brightness, while smoothness is improved mainly by the blade coating and calendering conditions. Optimization of base board properties and the blade + curtain + blade concept has resulted in the successful use of 100% recycled fiber to produce base board. The optical, mechanical, and printability properties of the final coated board meet market requirements for both offset and flexographic printing. Machine runnability is excellent at the current speed of 1000 m/min, and titanium dioxide has been eliminated in the coating formulations without affecting the coating coverage. A significant improvement in the total cost of coated white liner production has been achieved, compared to the conventional concept of using virgin fiber in the top ply. Future development will focus on combining low cost with further quality improvements to make linerboard suitable for a wider range of end-use applications, including frozen-food packaging and folding boxboard.


2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

2016 ◽  
Vol 30 (06) ◽  
pp. 1650063 ◽  
Author(s):  
Jingwen Sun ◽  
Jian Sun ◽  
Yunji Yi ◽  
Lucheng Qv ◽  
Shiqi Sun ◽  
...  

A low-cost and high-speed electro-optic (EO) switch using the guest–host EO material Disperse Red 1/Polymethyl Methacrylate (DR1/PMMA) was designed and fabricated. The DR1/PMMA material presented a low processing cost, an excellent photostability and a large EO coefficient of 13.1 pm/V. To improve the performance of the switch, the in-plane buried electrode structure was introduced in the polymer Mach–Zehnder waveguide to improve the poling and modulating efficiency. The characteristic parameters of the waveguide and the electrodes were carefully designed and the fabrication process was strictly controlled. Under 1550 nm, the insertion loss of the device was 12.7 dB. The measured switching rise time and fall time of the switch were 50.00 ns and 54.29 ns, respectively.


2021 ◽  
Vol 28 ◽  
pp. 107327482110099
Author(s):  
Abdosaleh Jafari ◽  
Peyman Mehdi Alamdarloo ◽  
Mehdi Dehghani ◽  
Peivand Bastani ◽  
Ramin Ravangard

Among cancers, colorectal cancer is the third most common cancer in the world and the fourth leading cause of cancer deaths worldwide. Some studies have shown that the incidence of colorectal cancer is increasing in Iran and in Fars province. The present study aimed to determine the economic burden of colorectal cancer in patients referred to the referral centers affiliated to Iran, Shiraz University of Medical Sciences in 2019 from the patients’ perspective. This is a partial economic evaluation and a cost-of-illness study conducted cross-sectionally in 2019. All the patients with colorectal cancer who had been referred to the referral centers affiliated to Iran, Shiraz University of Medical Sciences, and had medical records were studied through the census method (N = 96). A researcher-made data collection form was used to collect the cost data. The prevalence-based and bottom-up approaches were also used in this study. The human capital approach was applied to calculate indirect costs. The mean annual cost per patient with colorectal cancer in the present study was $10930.98 purchasing power parity (PPP) (equivalent to 5745.29 USD), the main part of which was the medical direct costs (74.86%). Also, among the medical direct costs per patient, the highest were those of surgeries (41.7%). In addition, the mean annual cost per patient with colorectal cancer in the country was $ 116917762 PPP (equivalent to 61451621.84 USD) in 2019. Regarding the considerable economic burden of colorectal cancer and in order to reduce the costs, these suggestions can be made: increasing the number of specialized beds through the cooperation of health donors, establishing free or low-cost accommodation centers for patients and their companions near the medical centers, using the Internet and cyberspace technologies to follow up the treatment of patients, and increasing insurance coverage and government drug subsidies on drug purchase.


2021 ◽  
Vol 11 (10) ◽  
pp. 4610
Author(s):  
Simone Berneschi ◽  
Giancarlo C. Righini ◽  
Stefano Pelli

Glasses, in their different forms and compositions, have special properties that are not found in other materials. The combination of transparency and hardness at room temperature, combined with a suitable mechanical strength and excellent chemical durability, makes this material indispensable for many applications in different technological fields (as, for instance, the optical fibres which constitute the physical carrier for high-speed communication networks as well as the transducer for a wide range of high-performance sensors). For its part, ion-exchange from molten salts is a well-established, low-cost technology capable of modifying the chemical-physical properties of glass. The synergy between ion-exchange and glass has always been a happy marriage, from its ancient historical background for the realisation of wonderful artefacts, to the discovery of novel and fascinating solutions for modern technology (e.g., integrated optics). Getting inspiration from some hot topics related to the application context of this technique, the goal of this critical review is to show how ion-exchange in glass, far from being an obsolete process, can still have an important impact in everyday life, both at a merely commercial level as well as at that of frontier research.


2021 ◽  
Vol 11 (4) ◽  
pp. 1887
Author(s):  
Markus Scherrer ◽  
Noelia Vico Triviño ◽  
Svenja Mauthe ◽  
Preksha Tiwari ◽  
Heinz Schmid ◽  
...  

It is a long-standing goal to leverage silicon photonics through the combination of a low-cost advanced silicon platform with III-V-based active gain material. The monolithic integration of the III-V material is ultimately desirable for scalable integrated circuits but inherently challenging due to the large lattice and thermal mismatch with Si. Here, we briefly review different approaches to monolithic III-V integration while focusing on discussing the results achieved using an integration technique called template-assisted selective epitaxy (TASE), which provides some unique opportunities compared to existing state-of-the-art approaches. This method relies on the selective replacement of a prepatterned silicon structure with III-V material and thereby achieves the self-aligned in-plane monolithic integration of III-Vs on silicon. In our group, we have realized several embodiments of TASE for different applications; here, we will focus specifically on in-plane integrated photonic structures due to the ease with which these can be coupled to SOI waveguides and the inherent in-plane doping orientation, which is beneficial to waveguide-coupled architectures. In particular, we will discuss light emitters based on hybrid III-V/Si photonic crystal structures and high-speed InGaAs detectors, both covering the entire telecom wavelength spectral range. This opens a new path towards the realization of fully integrated, densely packed, and scalable photonic integrated circuits.


2021 ◽  
Vol 11 (12) ◽  
pp. 5563
Author(s):  
Jinsol Ha ◽  
Joongchol Shin ◽  
Hasil Park ◽  
Joonki Paik

Action recognition requires the accurate analysis of action elements in the form of a video clip and a properly ordered sequence of the elements. To solve the two sub-problems, it is necessary to learn both spatio-temporal information and the temporal relationship between different action elements. Existing convolutional neural network (CNN)-based action recognition methods have focused on learning only spatial or temporal information without considering the temporal relation between action elements. In this paper, we create short-term pixel-difference images from the input video, and take the difference images as an input to a bidirectional exponential moving average sub-network to analyze the action elements and their temporal relations. The proposed method consists of: (i) generation of RGB and differential images, (ii) extraction of deep feature maps using an image classification sub-network, (iii) weight assignment to extracted feature maps using a bidirectional, exponential, moving average sub-network, and (iv) late fusion with a three-dimensional convolutional (C3D) sub-network to improve the accuracy of action recognition. Experimental results show that the proposed method achieves a higher performance level than existing baseline methods. In addition, the proposed action recognition network takes only 0.075 seconds per action class, which guarantees various high-speed or real-time applications, such as abnormal action classification, human–computer interaction, and intelligent visual surveillance.


2021 ◽  
pp. 096739112110230
Author(s):  
Meltem Sezen ◽  
Busra Tugba Camic

The emphasis of biocompatible polymer applications in medical sciences and biotechnology has remarkably increased. Developing new low-cost, low-toxicity and lightweight composite forms of biopolymers has become even more attractive since the addition of new species into polymer matrices assist to improve biomedical activities of such materials to a higher extend. Developments in nanoscience and nanotechnology recently contribute to controlled fabrication and ultraprecise diagnosis of such materials. This study concerns the observation of solution processing effects in the fabrication of porous PLA/AGNWs bionanocomposite coatings using electron and ion processing based serial cross-sectioning and high-resolution imaging. The nanostructuring and characterization were both performed in a focused ion-beam-scanning electron microscope (FIB-SEM) platform. HR-SEM imaging was conducted on-site to track solvent based morphological property alterations of PLA and PLA/AgNWs structures. Simultaneous SEM-EDS analyses revealed the elemental distribution and the chemical composition along the cross-sectioned regions of the samples. Accordingly, it was observed that, in case of acetone dissolved materials, both pristine PLA and PLA/AgNWs samples sustained their foamy structure. When chloroform was used as the solvent, the porosity of the polymer matrices was less and the resulting structure was found to be denser than samples dissolved in acetone with a lower surface area ratio inside the material. This can be attributed to the rapid volatilization of acetone compared to chloroform, and hence the formation of interconnected pore network. For both nanocomposite biopolymers dissolved in acetone and chloroform, silver nanowires were homogeneously distributed throughout PLA matrices.


Sign in / Sign up

Export Citation Format

Share Document