scholarly journals Preparation of isocyanates by carbamates thermolysis on the example of butyl isocyanate

2019 ◽  
Vol 58 (4) ◽  
pp. 40-47
Author(s):  
Ratmir R. Dashkin ◽  
◽  
Dmitry A. Gordeev ◽  
Khusrav Kh. Gafurov ◽  
Sergey N. Mantrov ◽  
...  

Butyl isocyanate is widely distributed as a precursor for the production of a number of biologically active substances: fungicides, preservatives, insecticides, personal care products, etc. Nowadays, there are a number of methods for the preparation of isocyanates, which can be divided into liquid phase and gas phase. One of the perspective methods for the production of isocyanates is the thermolysis of carbamate and/or the actions of various reaction activating agents, accompanied by the elimination of alcohol, but this process is reversible, which greatly complicates its use in industry. The paper presents the results of studies of non-catalytic thermal decomposition of N-alkylcarbamates with the formation of alkylisocyanates on the example of butylisocyanate in the gas phase, flow reactor in a wide temperature range (200 to 450 °C). In addition, a series of experiments was carried out using a catalyst, dibutyltin dilaurate, in order to reduce the thermolysis temperature and increase the yield of the final product. To implement the isocyanate production process, an experimental laboratory setup, consisting of a gas flow meter (argon) regulator, a packed column (for heating) and a sorption solution tank, was developed and tested. The thermolysis of N-n-butylcarbamate was carried out in two variations: the preparation of an individual n-butylisocyanate and the passage of reaction products through a sorption solution linking the n-butyl isocyanate to N-n-butyl-N '-(1-phenylethyl)urea, which allows to estimate the yield of the target n-butylisocyanate without additional losses. The analysis of the obtained substances was carried out by high performance liquid chromatography with a UV detector (target product) and a mass detector (analysis of by-products). According to the results of research, a modification of the laboratory facility was proposed, as well as n-butylisocyanate was obtained with a yield of 49% on the basis of a new technique.

2016 ◽  
Vol 41 (4) ◽  
pp. 418-427 ◽  
Author(s):  
David Lokhat ◽  
Maciej Starzak ◽  
Deresh Ramjugernath

The gas-phase reaction of hexafluoropropene and molecular oxygen was investigated in a tubular flow reactor at 450 kPa and within a temperature range of 463–493 K using HFP/O2 mixtures containing 20–67% HFP on a molar basis. Capillary and packed column chromatography served as the main analytical technique. The reaction yielded HFPO, COF2, CF3COF, C2F4 and c-C3F6 as gas-phase products. High molecular weight oligomers were also formed. The oligomers were found to have a polyoxadifluoromethylene structure according to elemental and 19F NMR analysis. At 493 K HFP is proposed to undergo oxygen-mediated decomposition to difluorocarbene radicals, yielding greater quantities of difluorocarbene recombination products. Kinetic parameters for a revised model of the oxidation process were identified through least squares analysis of the experimental data.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1961 ◽  
Author(s):  
Małgorzata Smoliło ◽  
Katarzyna Samson ◽  
Ting Zhou ◽  
Dorota Duraczyńska ◽  
Małgorzata Ruggiero-Mikołajczyk ◽  
...  

Oxidative dehydrogenation (ODH) of light alkanes to olefins—in particular, using vanadium-based catalysts—is a promising alternative to the dehydrogenation process. Here, we investigate how the activity of the vanadium phase in ODH is related to its dispersion in porous matrices. An attempt was made to synthesize catalysts in which vanadium was deposited on a microporous faujasite zeolite (FAU) with the hierarchical (desilicated) FAU as supports. These yielded different catalysts with varying amounts and types of vanadium phase and the porosity of the support. The phase composition of the catalysts was confirmed by X-ray diffraction (XRD); low temperature nitrogen sorption experiments resulted in their surface area and pore volumes, and reducibility was measured with a temperature-programmed reduction with a hydrogen (H2-TPR) method. The character of vanadium was studied by UV-VIS spectroscopy. The obtained samples were subjected to catalytic tests in the oxidative dehydrogenation of propane in a fixed-bed gas flow reactor with a gas chromatograph to detect subtract and reaction products at a temperature range from 400–500 °C, with varying contact times. The sample containing 6 wt% of vanadium deposited on the desilicated FAU appeared the most active. The activity was ascribed to the presence of the dispersed vanadium ions in the tetragonal coordination environment and support mesoporosity.


2006 ◽  
Vol 6 (5) ◽  
pp. 10275-10297 ◽  
Author(s):  
C. Stenby ◽  
U. Pöschl ◽  
P. von Hessberg ◽  
M. Bilde ◽  
O. J. Nielsen ◽  
...  

Abstract. The temperature dependence of secondary organic aerosol (SOA) formation from ozonolysis of β-pinene was studied in a flow reactor at 263–303 K and 1007 hPa. The observed SOA yields were of similar magnitude as predicted by a two-product model based on detailed gas phase chemistry (Jenkin, 2004), reaching maximum values of 0.22–0.39 at high particle mass concentrations. However, the measurement data exhibited significant deviations (up to 50%) from the predicted linear dependence on inverse temperature. When fitting the measurement data with a two-product model, we found that both the partitioning coefficients (Kom,i) and the stoichiometric yields (αi) of the low-volatile and semi-volatile species vary with temperature. The results indicate that not only the reaction product vapour pressures but also the relative contributions of different gas-phase or multiphase reaction channels are dependent on temperature. We suggest that the modelling of secondary organic aerosol formation in the atmosphere needs to take into account the effects of temperature on the pathways and kinetics of the involved chemical reactions as well as on the gas-particle partitioning of the reaction products.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 915
Author(s):  
Yik-Sze Lau ◽  
Man-Nin Chan ◽  
Hon-Yin Poon ◽  
Yan Tan ◽  
Shun-Cheng Lee ◽  
...  

In the current study, the photooxidation reaction of toluene (C7H8) was investigated in a Potential Aerosol Mass Oxidation Flow Reactor (PAM OFR). The hydroxyl radical (OH) exposure of toluene in the PAM OFR ranged from 0.4 to 1.4 × 1012 molec cm−3 s, which is equivalent to 3 to 12 days of atmospheric oxidation. A proton transfer reaction-mass spectrometer (PTR-MS) and a scanning mobility particle sizer (SMPS) were used to study the gas-phase products formed and particle number changes of the oxidation reaction in PAM OFR. The secondary organic aerosol (SOA) formed in the PAM OFR was also collected for off-line chemical analysis. Key gas-phase reaction products of toluene, including glyoxal, methyl glyoxal, unsaturated carbonyl compounds, and benzaldehyde, were identified by the PTR-MS. Second generation products, including acetic acid, formaldehyde, formic acid, and acetaldehyde, were also detected. By comparing the mass spectrums obtained under different OH exposures and relative humidity (RH), changes in the two parameters have minimal effects on the composition of gas-phase products formed, expect for the spectrum obtained at OH exposure of 0.4 × 1012 cm−3 s and RH = 17%, which is slightly different from other spectrums. SMPS results showed that particle mass concentration increases with increasing OH exposure, while particle number concentration first increases and then decreases with increasing OH exposure. This result probably suggests the formation of oligomers at high OH exposure conditions. Off-line chemical analysis of the SOA sample was dominated by C4 diacids, including malic acid, citramalic acid, and tartaric acid. The well-known toluene SOA marker 2,3-Dihydroxy-4-oxopentanoic acid, as well as 2,3-dihydroxyglutaric acid, which has not been identified in previous toluene photooxidation experiments, were also detected in the SOA sample. Our results showed good agreements with the results of previous smog chamber studies of toluene photooxidation reaction, and they suggested that using PAM OFR for studies of oxidation reaction of different VOCs can be atmospherically relevant.


Surfaces ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 546-559 ◽  
Author(s):  
Vincenzo Vaiano ◽  
Diana Sannino

Heterogeneous photocatalysis in the gas phase has been applied as a promising technique for organic syntheses in mild conditions. Modified zeolites have been used under UV irradiation as novel photocatalysts. In this study, we preliminarily investigated the photoxidation of cyclohexane on ferrierite and MoOx-functionalized ferrierite in a gas–solid continuous flow reactor. In the presence of UV light, MoOx-functionalized ferrierite showed the formation of benzene and cyclohexene as reaction products, indicating the occurrence of photocatalysed cyclohexane oxydehydrogenation. By contrast, unmodified ammonium ferrierite exhibited relevant activity for total oxidation of cyclohexane to carbon dioxide and water. The influence of Mo loading on cyclohexane conversion and products selectivity was evaluated.


Author(s):  
V.P. Bondarenko ◽  
O.O. Matviichuk

Detail investigation of equilibrium chemical reactions in WO3–H2O system using computer program FacktSage with the aim to establish influence of temperature and quantity of water on formation of compounds of H2WO4 and WO2(OH)2 as well as concomitant them compounds, evaporation products, decomposition and dissociation, that are contained in the program data base were carried out. Calculations in the temperature range from 100 to 3000 °С were carried out. The amount moles of water added to 1 mole of WO3 was varied from 0 to 27. It is found that the obtained data by the melting and evaporation temperatures of single-phase WO3 are in good agreement with the reference data and provide additionally detailed information on the composition of the gas phase. It was shown that under heating of 1 mole single-phase WO3 up to 3000 °С the predominant oxide that exist in gaseous phase is (WO3)2. Reactions of it formation from other oxides ((WO3)3 and (WO3)4) were proposed. It was established that compound H2WO4 is stable and it is decomposed on WO3 and H2O under 121 °C. Tungsten Oxide Hydrate WO2(OH)2 first appears under 400 °С and exists up to 3000 °С. Increasing quantity of Н2О in system leads to decreasing transition temperature of WO3 into both liquid and gaseous phases. It was established that adding to 1 mole WO3 26 mole H2O maximum amount (0,9044–0,9171 mole) WO2(OH)2 under temperatures 1400–1600 °С can be obtained, wherein the melting stage of WO3 is omitted. Obtained data also allowed to state that that from 121 till 400 °С WO3–Н2O the section in the О–W–H ternary system is partially quasi-binary because under these temperatures in the system only WO3 and Н2O are present. Under higher temperatures WO3–Н2O section becomes not quasi-binary since in the reaction products WO3 with Н2O except WO3 and Н2O, there are significant amounts of WO2(OH)2, (WO3)2, (WO3)3, (WO3)4 and a small amount of atoms and other compounds. Bibl. 12, Fig. 6, Tab. 5.


2020 ◽  
pp. 48-55
Author(s):  
M.E. Sharanda ◽  
◽  
E.A. Bondarenko ◽  

Ethylene glycol and propylene glycol are important representatives of polyols. On an industrial scale, they are obtained from petrochemical raw materials. Within a decade, significant efforts were made for the producing of polyols from biologically renewable raw materials - carbohydrates. The general trend for carbohydrate hydrogenolysis includes application of liquid-phase process with the use of modified metal-oxide catalysts, at 120-120 ° C and pressure of 3MPa or above. So high pressure is used for the reason to increase hydrogen solubility, and also due to the high partial pressure of low boiling solvents. We supposed that usage of high boiling solvents could allow hydrogenolysis to be performed at the lower pressure. Ethylene glycol and propylene glycol are of particular interest as such kind of solvent since they are both the main products of glucose hydrogenolysis. In this work, the process of hydrogenolysis of glucose and fructose over Cu / MgO-ZrO2 catalyst have been studied at temperature range of 160-200 °C and a pressure of 0.1-0.3 MPa in a flow reactor. The solvents were simultaneously the target products of the reaction - ethylene glycol and / or propylene glycol. Gas chromatography and 13C NMR were used for the reaction products identification. It was found that the solubility of glucose in propylene glycol is 21 % by weight, and in ethylene glycol 62% by weight. It was pointed out that the process of hydrogenolysis can take place at a pressure close to atmospheric. Under these conditions, the conversion of hexoses reaches 96-100 %. The reaction products are preferably propylene glycol and ethylene glycol. The total selectivity for C3-2 polyols is 90-94 %, that is higher than in the hydrogenolysis of glucose in aqueous solution.


Author(s):  
Raju Chandra ◽  
Manisha Pant ◽  
Harchan Singh ◽  
Deepak Kumar ◽  
Ashwani Sanghi

A reliable and reproducible reversed-phase high performance liquid chromatography (RP-HPLC) was developed for the quantitative determination of Remipril drug content from marketed bulk tablets. The active ingredient of Remipril separation achieved with C18 column using the methanol water mobile phase in the ratio of 40:60 (v/v). The active ingredient of the drug content quantify with UV detector at 215 nm. The retention time of Remipril is 5.63 min. A good linearity relation (R2=0.999) was obtained between drug concentration and average peak areas. The limit of detection and limit of quantification of the instrument were calculated 0.03 and 0.09 µg/mL, respectively. The accuracy of the method validation was determined 102.72% by recoveries method.


2020 ◽  
Vol 16 (8) ◽  
pp. 1106-1112
Author(s):  
Ibrahim A. Darwish ◽  
Nasr Y. Khalil ◽  
Mohammad AlZeer

Background: Axitinib (AXT) is a member of the new generation of the kinase inhibitor indicated for the treatment of advanced renal cell carcinoma. Its therapeutic benefits depend on assuring the good-quality of its dosage forms in terms of content and stability of the pharmaceutically active ingredient. Objective: This study was devoted to the development of a simple, sensitive and accurate stabilityindicating high-performance liquid chromatographic method with ultraviolet detection (HPLC-UV) for the determination of AXT in its bulk and dosage forms. Methods: Waters HPLC system was used. The chromatographic separation of AXT, internal standard (olaparib), and degradation products were performed on the Nucleosil CN column (250 × 4.6 mm, 5 μm). The mobile phase consisted of water:acetonitrile:methanol (40:40:20, v/v/v) with a flow rate of 1 ml/min, and the UV detector was set at 225 nm. AXT was subjected to different accelerated stress conditions and the degradation products, when any, were completely resolved from the intact AXT. Results: The method was linear (r = 0.9998) in the concentration range of 5-50 μg/ml. The limits of detection and quantitation were 0.85 and 2.57 μg/ml, respectively. The accuracy of the method, measured as recovery, was in the range of 98.0-103.6% with relative standard deviations in the range of 0.06-3.43%. The results of stability testing revealed that AXT was mostly stable in neutral and oxidative conditions; however, it was unstable in alkaline and acidic conditions. The kinetics of degradation were studied, and the kinetic rate constants were determined. The proposed method was successfully applied for the determination of AXT in bulk drug and dosage forms. Conclusions: A stability-indicating HPLC-UV method was developed and validated for assessing AXT stability in its bulk and dosage forms. The method met the regulatory requirements of the International Conference on Harmonization (ICH) and the Food and Drug Administration (FDA). The results demonstrated that the method would have great value when applied in quality control and stability studies for AXT.


2018 ◽  
Vol 15 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Bürge Aşçı ◽  
Mesut Koç

Introduction:This paper presents the development and validation of a novel, fast, sensitive and accurate high performance liquid chromatography (HPLC) method for the simultaneous quantitative determination of dibucaine HCl, fluocortolone pivalate and fluocortolone caproate in pharmaceutical preparations.Experiment:Development of the chromatographic method was based on an experimental design approach. A five-level-three-factor central composite design requiring 20 experiments in this optimization study was performed in order to evaluate the effects of three independent variances including mobile phase ratio, flow rate and amount of acid in the mobile phase.Conclusion:The optimum composition for mobile phase was found as a methanol:water:acetic acid mixture at 71.6 : 26.4 : 2 (v/v/v) ratio and optimum separation was acquired by isocratic elution with a flow rate of 1.3 mL/min. The analytes were detected using a UV detector at 240 nm. The developed method was validated in terms of linearity, precision, accuracy, limit of detection/quantitation and solution stability and successfully applied to the determination of dibucaine HCl, fluocortolone pivalate and fluocortolone caproate in pharmaceutical topical formulations such as suppositories and ointments.


Sign in / Sign up

Export Citation Format

Share Document