scholarly journals Impact of Water-latent Heat on the Thermal Structure of Ultra-cool Objects: Brown Dwarfs and Free-floating Planets

2021 ◽  
Vol 922 (1) ◽  
pp. 26
Author(s):  
Shih-Yun Tang ◽  
Tyler D. Robinson ◽  
Mark S. Marley ◽  
Natasha E. Batalha ◽  
Roxana Lupu ◽  
...  

Abstract Brown dwarfs are essential targets for understanding planetary and sub-stellar atmospheres across a wide range of thermal and chemical conditions. As surveys continue to probe ever deeper and as observing capabilities continue to improve, the number of known Y dwarfs—the coldest class of sub-stellar objects, with effective temperatures below about 600 K—is rapidly growing. Critically, this class of ultra-cool objects has atmospheric conditions that overlap with solar-system worlds and, as a result, tools and ideas developed from studying Earth, Jupiter, Saturn, and other nearby worlds are well suited for application to sub-stellar atmospheres. To that end, we developed a one-dimensional (vertical) atmospheric structure model for ultra-cool objects that includes moist adiabatic convection, as this is an important process for many solar-system planets. Application of this model across a range of effective temperatures (350, 300, 250, 200 K), metallicities ([M/H] of 0.0, 0.5, 0.7, 1.5), and gravities (log g of 4.0, 4.5, 4.7, 5.0) demonstrates strong impact of water-latent heat release on simulated temperature-pressure profiles. At the highest metallicities, water-vapor mixing ratios reach an Earth-like 3% with associated major alterations to the thermal structure in the atmospheric regions where water condenses. Spectroscopic and photometric signatures of metallicity and moist convection should be readily detectable at near- and mid-infrared wavelengths, especially with James Webb Space Telescope observations, and can help indicate the formation history of an object.

2001 ◽  
Vol 200 ◽  
pp. 492-495 ◽  
Author(s):  
Günther Wuchterl

Based on the theory of stellar structure and evolution combined with the theory of stellar atmospheres theoretical properties of young stars can be calculated. These calculations of pre-main sequence evolution have been refined over the last decades and do now provide theoretical spectra and colours even for very cool objects like young stars brown dwarfs and planets. Two of their key assumptions must become invalid towards the formation phases: (1) the hydrostatic equilibrium of pressure forces and gravity that assumes stellar matter to be at rest and (2) the non-dependence on the initial thermal structure. The former (1) is violated by accretion- and collapse flows, the latter (2) because a new born young star is observed with the specific thermal structure produced by the cloud collapse. I discuss changes in the theoretical properties of young stars that follow from calculating the pre-main sequence evolution as the consequence of the collapse of Bonnor-Ebert spheres.


2008 ◽  
Vol 65 (11) ◽  
pp. 3571-3583 ◽  
Author(s):  
Tapio Schneider ◽  
Paul A. O’Gorman

Abstract Simulations with an aquaplanet general circulation model show that sensible and latent heat transport by large-scale eddies influences the extratropical thermal stratification over a wide range of climates, even in relatively warm climates with small meridional surface temperature gradients. Variations of the lapse rate toward which the parameterized moist convection in the model relaxes atmospheric temperature profiles demonstrate that the convective lapse rate only marginally affects the extratropical thermal stratification in Earth-like and colder climates. In warmer climates, the convective lapse rate does affect the extratropical thermal stratification, but the effect is still smaller than would be expected if moist convection alone controlled the thermal stratification. A theory for how large-scale eddies modify the thermal stratification of dry atmospheres is consistent with the simulation results for colder climates. For warmer and moister climates, however, theories and heuristics that have been proposed to account for the extratropical thermal stratification are not consistent with the simulation results. Theories for the extratropical thermal stratification will generally have to take transport of sensible and latent heat by large-scale eddies into account, but moist convection may only need to be taken into account regionally and in sufficiently warm climates.


1985 ◽  
Vol 111 ◽  
pp. 303-329
Author(s):  
Bengt Gustafsson ◽  
Uffe Graae-Jørgensen

The use of photometric and spectroscopic criteria, calibrated by model-atmosphere calculations, for determining effective temperatures, surface gravities and chemical compositions of stars is illustrated and commented on. The accuracy that can be obtained today in such calibrations is discussed, as well as possible ways of improving this accuracy further for different types of stars.


Author(s):  
Dominik Ebi ◽  
Peter Jansohn

Abstract Operating stationary gas turbines on hydrogen-rich fuels offers a pathway to significantly reduce greenhouse gas emissions in the power generation sector. A key challenge in the design of lean-premixed burners, which are flexible in terms of the amount of hydrogen in the fuel across a wide range and still adhere to the required emissions levels, is to prevent flame flashback. However, systematic investigations on flashback at gas turbine relevant conditions to support combustor development are sparse. The current work addresses the need for an improved understanding with an experimental study on boundary layer flashback in a generic swirl burner up to 7.5 bar and 300° C preheat temperature. Methane-hydrogen-air flames with 50 to 85% hydrogen by volume were investigated. High-speed imaging was applied to reveal the flame propagation pathway during flashback events. Flashback limits are reported in terms of the equivalence ratio for a given pressure, preheat temperature, bulk flow velocity and hydrogen content. The wall temperature of the center body along which the flame propagated during flashback events has been controlled by an oil heating/cooling system. This way, the effect any of the control parameters, e.g. pressure, had on the flashback limit was de-coupled from the otherwise inherently associated change in heat load on the wall and thus change in wall temperature. The results show that the preheat temperature has a weaker effect on the flashback propensity than expected. Increasing the pressure from atmospheric conditions to 2.5 bar strongly increases the flashback risk, but hardly affects the flashback limit beyond 2.5 bar.


2021 ◽  
Author(s):  
James Harding

<p>Earth Observation (EO) satellites are drawing considerable attention in areas of water resource management, given their potential to provide unprecedented information on the condition of aquatic ecosystems. Despite ocean colours long history; water quality parameter retrievals from shallow and inland waters remains a complex undertaking. Consistent, cross-mission retrievals of the primary optical parameters using state-of-the-art algorithms are limited by the added optical complexity of these waters. Less work has acknowledged their non- or weakly optical parameter counterparts. These can be more informative than their vivid counterparts, their potential covariance would be regionally specific. Here, we introduce a multi-input, multi-output Mixture Density Network (MDN), that largely outperforms existing algorithms when applied across different bio-optical regimes in shallow and inland water bodies. The model is trained and validated using a sizeable historical database in excess of 1,000,000 samples across 38 optical and non-optical parameters, spanning 20 years across 500 surface waters in Scotland. The single network learns to predict concurrently Chlorophyll-a, Colour, Turbidity, pH, Calcium, Total Phosphorous, Total Organic Carbon, Temperature, Dissolved Oxygen and Suspended Solids from real Landsat 7, Landsat 8, and Sentinel 2 spectra. The MDN is found to fully preserve the covariances of the optical and non-optical parameters, while known one-to-many mappings within the non-optical parameters are retained. Initial performance evaluations suggest significant improvements in Chl-a retrievals from existing state-of-the-art algorithms. MDNs characteristically provide a means of quantifying the noise variance around a prediction for a given input, now pertaining to real data under a wide range of atmospheric conditions. We find this to be informative for example in detecting outlier pixels such as clouds, and may similarly be used to guide or inform future work in academic or industrial contexts. </p>


2017 ◽  
Vol 17 (19) ◽  
pp. 12011-12030 ◽  
Author(s):  
Mathias Gergely ◽  
Steven J. Cooper ◽  
Timothy J. Garrett

Abstract. The snowflake microstructure determines the microwave scattering properties of individual snowflakes and has a strong impact on snowfall radar signatures. In this study, individual snowflakes are represented by collections of randomly distributed ice spheres where the size and number of the constituent ice spheres are specified by the snowflake mass and surface-area-to-volume ratio (SAV) and the bounding volume of each ice sphere collection is given by the snowflake maximum dimension. Radar backscatter cross sections for the ice sphere collections are calculated at X-, Ku-, Ka-, and W-band frequencies and then used to model triple-frequency radar signatures for exponential snowflake size distributions (SSDs). Additionally, snowflake complexity values obtained from high-resolution multi-view snowflake images are used as an indicator of snowflake SAV to derive snowfall triple-frequency radar signatures. The modeled snowfall triple-frequency radar signatures cover a wide range of triple-frequency signatures that were previously determined from radar reflectivity measurements and illustrate characteristic differences related to snow type, quantified through snowflake SAV, and snowflake size. The results show high sensitivity to snowflake SAV and SSD maximum size but are generally less affected by uncertainties in the parameterization of snowflake mass, indicating the importance of snowflake SAV for the interpretation of snowfall triple-frequency radar signatures.


2021 ◽  
Author(s):  
Brian J. Carroll ◽  
Amin R. Nehrir ◽  
Susan Kooi ◽  
James Collins ◽  
Rory A. Barton-Grimley ◽  
...  

Abstract. Airborne differential absorption lidar (DIAL) offers a uniquely capable solution to the problem of measuring water vapor (WV) with high precision, accuracy, and resolution throughout the troposphere and lower stratosphere. The High Altitude Lidar Observatory (HALO) airborne WV DIAL was recently developed at NASA Langley Research Center and was first deployed in 2019. It uses four wavelengths at 935 nm to achieve sensitivity over a wide dynamic range, and simultaneously employs 1064 nm backscatter and 532 nm high spectral resolution lidar (HSRL) measurements for aerosol and cloud profiling. A key component of the WV retrieval framework is flexibly trading resolution for precision to achieve optimal data sets for scientific objectives across scales. A technique for retrieving WV in the lowest few hundred meters of the atmosphere using the strong surface return signal is also presented. The five maiden flights of the HALO WV DIAL spanned the tropics through midlatitudes with a wide range of atmospheric conditions, but opportunities for validation were sparse. Comparisons to dropsonde WV profiles were qualitatively in good agreement, though statistical analysis was impossible due to systematic error in the dropsonde measurements. Comparison of HALO to in situ WV measurements onboard the aircraft showed no substantial bias across three orders of magnitude, despite variance (R2 = 0.66) that may be largely attributed to spatiotemporal variability. Precipitable water vapor measurements from the spaceborne sounders AIRS and IASI compared very well to HALO with R2 > 0.96 over ocean and R2 = 0.86 over land.


2020 ◽  
Author(s):  
Jens-Michael Löwe ◽  
Markus Schremb ◽  
Volker Hinrichsen ◽  
Cameron Tropea

Abstract. Ice nucleation is of great interest for various processes such as cloud formation in the scope of atmospheric research, and icing of airplanes, ships or structures. Ice nucleation research aims to improve the knowledge about the physical mechanisms and, therefore improve the safety and reliability of the applications affected by ice nucleation. Several influencing factors like liquid supercooling or contamination with nucleants, as well as external disturbances such as an electric field or surface defects affect ice nucleation. Especially for ice crystal formation in clouds and icing of high-voltage equipment, an external electric field may have a strong impact on ice nucleation. Although ice nucleation has been widely investigated for numerous conditions, the effect of an electric field on nucleation is not yet completely understood; results reported in literature are even contradictory. In the present study, an advanced experimental approach for the examination of ice nucleation in water droplets exposed to an electric field is demonstrated. It comprises a method for droplet ensemble preparation and an experimental setup, which allows observation of the droplet ensemble during its exposure to well-defined thermal and electric fields, which are both variable over a wide range. The entire approach aims at maximizing the accuracy and repeatability of the experiments in order to enable examination of even the most minor influences on ice nucleation. For that purpose, the boundary conditions the droplet sample is exposed to during the experiment are examined in particular detail using experimental and numerical methods. The methodological capabilities and accuracy have been demonstrated based on several test nucleation experiments without an electric field, indicating almost perfect repeatability.


2021 ◽  
Author(s):  
◽  
Daniel P. Lowry

<p>Reconstructing past grounding-line evolution can help inform future sea level projections by constraining marine ice sheet sensitivities to changes in climate. The Ross Embayment, the largest sector of Antarctica, experienced substantial grounding-line retreat since the Last Glacial Maximum. However, different interpretations for the timing and spatial pattern of deglacial grounding-line retreat in this region persist, suggesting either very high or low sensitivity to external forcings. Complicating matters is the sparse paleoclimate record, which is limited spatially and temporally. In this thesis, I address these issues by analysing the output of two transient climate simulations in relation to Antarctic ice core and marine sediment records, and performing and analysing the largest ensemble to date of regional ice sheet model simulations of the last deglaciation in the Ross Sea. The climate models and paleoclimate proxy records exhibit key differences in the timing, magnitude and duration of millennial-scale climate change events through the deglacial period. Using this diverse set of deglacial climate trajectories as ocean and atmosphere forcings, the ice sheet model ensemble produces a wide range of ice sheet responses, supporting the view that external forcings are the main drivers of past grounding-line retreat in the region. The simulations demonstrate that atmospheric conditions early in the deglacial period can enhance or diminish ice sheet sensitivity to rising ocean temperatures, thereby controlling the initial timing and spatial pattern of grounding-line retreat. Through the Holocene, grounding-line position is more sensitive to sub-shelf melt rates as the ocean cavity below the ice shelf expands. Model parameters that control the physical properties of the bed, deformation of the continental shelf, and rheological properties of the ice strongly influence the sensitivity of ice sheets to external forcing. Basin-wide differences in these forcings, driven by oceanic and atmospheric circulation, and spatial heterogeneity of bed properties likely contribute to the asynchronous pattern of retreat in the eastern and western parts of the embayment, as indicated by marine and terrestrial proxy records.</p>


2009 ◽  
Vol 5 (S264) ◽  
pp. 3-18 ◽  
Author(s):  
Ignasi Ribas

AbstractProper characterization of the host star to a planet is a key element to the understanding of its overall properties. The star has a direct impact through the modification of the structure and evolution of the planet atmosphere by being the overwhelmingly larger source of energy. The star plays a central role in shaping the structure, evolution, and even determining the mere existence of planetary atmospheres. The vast majority of the stellar flux is well understood thanks to the impressive progress made in the modeling of stellar atmospheres. At short wavelengths (X-rays to UV), however, the information is scarcer since the stellar emission does not originate in the photosphere but in the chromospheric and coronal regions, which are much less understood. The same can be said about particle emissions, with a strong impact on planetary atmospheres, because a detailed description of the time-evolution of stellar wind is still lacking. Here we review our current understanding of the flux and particle emissions of the Sun and low-mass stars and briefly address their impact in the context of planetary atmospheres.


Sign in / Sign up

Export Citation Format

Share Document