Electroosmotic Flow Rate through a Particle Packed Bed

Author(s):  
Hitoshi Takase ◽  
Takuya Sakurai
2020 ◽  
Vol 17 (4) ◽  
pp. 47-52
Author(s):  
Vibha Goswami ◽  
Renu Upadhyaya ◽  
Sumanta Kumar Meher

In this study, synthesised Azadirachta indica adsorbent was used for the removal of methylene blue dye using a packed bed column. The effect of feed flow rate, feed methylene blue dye concentration, and bed height of column on percentage removal of dye was studied. It was observed that the column bed exhausted rapidly at a higher flow rate and therefore, a breakthrough occurred faster. However, it was observed that bed exhaustion time increases on increasing the bed height from 2 to 10 inch at 10 mg/L feed dye concentration and feed flow rate of 40 ml/min. It was also found that the breakthrough curve is more dispersed and the percentage removal of dye increases on decreasing the feed methylene dye concentration from 150 to 10 mg/L. The percentage removal was found to be 96.89% at 20 ml/min of feed flow rate under 10 inch of bed height and 10 mg/L of feed dye concentration. The atomic absorption spectrophotometer and scanning electron microscope were used for estimating the effluent dye concentration from the column and morphological study, respectively.


2013 ◽  
Vol 781-784 ◽  
pp. 1637-1645 ◽  
Author(s):  
Ting Jun Ma ◽  
Yi Qing Xu

The degradation effectiveness and reaction kinetics of representative organophosphorus (OP) pesticide in a packed-bed plasma reactor have been studied. Important parameters, including peak voltage, pulse frequency, gas-flow rate, initial concentration, diameter of catalyst particles, and thickness of catalyst bed which influences the removal efficiency, were investigated. Experimental results indicated that rogor removal efficiency as high as 80% can be achieved at 35 kV with the gas flow rate of 800 mL/min and initial concentration of 11.2 mg/m3.The removal efficiency increased with the increase of pulsed high voltage, and pulse frequency, the decrease of the diameter of catalyst particles and the thickness of catalyst bed. Finally, a model was established to predict the degradation of the rogor, which generally can simulate the experimental measurements to some degree.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Hsiao-Ching Chen ◽  
Hen-Yi Ju ◽  
Tsung-Ta Wu ◽  
Yung-Chuan Liu ◽  
Chih-Chen Lee ◽  
...  

An optimal continuous production of biodiesel by methanolysis of soybean oil in a packed-bed reactor was developed using immobilized lipase (Novozym 435) as a catalyst in atert-butanol solvent system. Response surface methodology (RSM) and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and substrate molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature have significant effects on the percentage of molar conversion. On the basis of ridge max analysis, the optimum conditions were as follows: flow rate 0.1 mL/min, temperature52.1∘C, and substrate molar ratio 1 : 4. The predicted and experimental values of molar conversion were83.31±2.07% and82.81±.98%, respectively. Furthermore, the continuous process over 30 days showed no appreciable decrease in the molar conversion. The paper demonstrates the applicability of using immobilized lipase and a packed-bed reactor for continuous biodiesel synthesis.


Author(s):  
V Sureshkannan ◽  
TV Arjunan ◽  
D Seenivasan ◽  
SP Anbuudayasankar ◽  
M Arulraj

Compressed air free from traces of water vapour is vital in many applications in an industrial sector. This study focuses on parametric optimization of a pressure-based packed bed adsorption system for air dehumidification through the Taguchi method and Genetic Algorithm. The effect of operational parameters, namely absolute feed air pressure, feed air linear velocity, and purge air flow rate percent on adsorption uptake rate of molecular sieve 13X-water pair, are studied based on L25 orthogonal array. From the analysis of variance, it has been found that absolute feed air pressure and purge air flow rate percent were the parameters making significant improvement in the adsorption uptake rate. A correlation representing the process was developed using regression analysis. The optimum adsorption conditions were obtained through the Taguchi method and genetic algorithm and verified through the confirmation experiments. This system can be recommended for the industrial and domestic applications that require product air with the dew point temperature below 0°C.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Morteza Sadeghi ◽  
Arman Sadeghi ◽  
Mohammad Hassan Saidi

Adopting the Navier slip conditions, we analyze the fully developed electroosmotic flow in hydrophobic microducts of general cross section under the Debye–Hückel approximation. The method of analysis includes series solutions which their coefficients are obtained by applying the wall boundary conditions using the least-squares matching method. Although the procedure is general enough to be applied to almost any arbitrary cross section, eight microgeometries including trapezoidal, double-trapezoidal, isosceles triangular, rhombic, elliptical, semi-elliptical, rectangular, and isotropically etched profiles are selected for presentation. We find that the flow rate is a linear increasing function of the slip length with thinner electric double layers (EDLs) providing higher slip effects. We also discover that, unlike the no-slip conditions, there is not a limit for the electroosmotic velocity when EDL extent is reduced. In fact, utilizing an analysis valid for very thin EDLs, it is shown that the maximum electroosmotic velocity in the presence of surface hydrophobicity is by a factor of slip length to Debye length higher than the Helmholtz–Smoluchowski velocity. This approximate procedure also provides an expression for the flow rate which is almost exact when the ratio of the channel hydraulic diameter to the Debye length is equal to or higher than 50.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
R. Chandra ◽  
V. K. Vijay ◽  
P. M. V. Subbarao

This paper presents the results of an automated water scrubbing system used for enrichment of methane content in the biogas, to produce vehicular grade biomethane fuel. Incorporation of automatic control systems for precisely regulating the water level and maintaining constant operating pressure in the packed bed absorption column of water scrubbing system resulted in steady-state operation of the scrubbing system and a consistent supply of methane-enriched biogas from the gas outlet. The improved automated water scrubbing system was found to enrich 97% methane at an operating column pressure of 1.0 MPa with 2.5 m3/h biogas in-flow rate and 2.0 m3/h water in-flow rate into the scrubbing column unit.


2014 ◽  
Vol 908 ◽  
pp. 277-281
Author(s):  
Fei Wu ◽  
Jie Wu ◽  
Mei Jin ◽  
Fang Wang ◽  
Ping Lu

Based on acetone-H2O system, the influence of the gas-liquid distribution inducer on the mass transfer coefficient in the rotating packed bed with the stainless steel packing was investigated. Furthermore, the absorption performance was also obtained under the experimental condition of the rotational speed of 630 rpm, the gas flow rate of 2 m3/h and the liquid flow rate of 100 L/h in the rotating packed bed with different types and different installation ways of the distribution inducer. The experimental results showed that the volumetric mass transfer coefficient Kyα per unit contact length of gas-liquid was increased by 8.6% for the forward-curved fixed blade, by 19.8% for the backward-curved rotor blade and by 33.2% with the combination of the straight radial rotor blade and the backward-curved fixed blade, respectively. Furthermore, when the gas flow rate was 2.5 m3/h, Kyα per unit contact length of gas-liquid was increased by 2.9% for the forward-curved fixed blade, by 25.3% for the backward-curved rotor blade, by 42.7% for the combination of the straight radial rotor blade and the backward-curved fixed blade, respectively. The results indicated that the distribution inducer play an important role on the improvement of the mass transfer coefficient in acetone-H2O system.


Processes ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 43 ◽  
Author(s):  
Hongfang Lu ◽  
Guoguang Ma ◽  
Mohammadamin Azimi ◽  
Lingdi Fu

In the dehydration process of offshore natural gas production, due to the site limitation of the platform, if the conventional triethylene glycol (TEG) dehydration process is employed, the size of the absorption tower is usually small. However, in the case of fluctuations in raw material gas and large gas production, it is easy to cause a large loss of TEG and a flooding event, resulting in the water dew point of natural gas not meeting the requirements. Therefore, combined with the dehydration process of TEG and supergravity technology, a new dehydration process of natural gas suitable for offshore platforms is proposed in this paper. The principle and process of the TEG dehydration process based on supergravity technology are discussed by establishing a mass transfer model. The laboratory experiment of the new process is carried out, and the effects of TEG flow rate, super-gravity packed bed rotation speed, and gas flow rate on the air dew point are obtained. By studying the dewatering balance of the rotating packed bed in the improved process, it is proved that the dewatering performance of the high gravity machine (Higee) is much better than that of the ordinary tower dewatering equipment. Through field experiments, the dewatering effect of continuous operation and sudden changes in working conditions is obtained, indicating that the Higee can completely replace the traditional tower equipment for natural gas dehydration.


2019 ◽  
Vol 9 (20) ◽  
pp. 4359 ◽  
Author(s):  
Saima Noreen ◽  
Sadia Waheed ◽  
Abid Hussanan ◽  
Dianchen Lu

This article explores the heat and transport characteristics of electroosmotic flow augmented with peristaltic transport of incompressible Carreau fluid in a wavy microchannel. In order to determine the energy distribution, viscous dissipation is reckoned. Debye Hückel linearization and long wavelength assumptions are adopted. Resulting non-linear problem is analytically solved to examine the distribution and variation in velocity, temperature and volumetric flow rate within the Carreau fluid flow pattern through perturbation technique. This model is also suitable for a wide range of biological microfluidic applications and variation in velocity, temperature and volumetric flow rate within the Carreau fluid flow pattern.


Sign in / Sign up

Export Citation Format

Share Document