scholarly journals Screening of Antimicrobial and Adhesive Activity of Lactobacilli Isolated from the National Food Products from Different Districts of the Karaganda Region (Kazakhstan)

2021 ◽  
Vol 9 (A) ◽  
pp. 827-832
Author(s):  
Zhanerke Amirkhanova ◽  
Saule Akhmetova ◽  
Samat Kozhakhmetov ◽  
Almagul Kushugulova ◽  
Rakhat Bodeeva ◽  
...  

BACKGROUND: It is a national priority to look for new probiotic bacteria with highly active biological properties to create a new generation of probiotics, ferments, therapeutic, and prophylactic fermented milk products, taking into account ethnocultural and regional characteristics. AIM: The aim of the study is to assess probiotic properties of strains of lactobacilli (antimicrobial and adhesive), which are isolated from national lactic acid products from different districts of the Karaganda region (Kazakhstan). MATERIALS AND METHODS: There were modern microbiological methods applied during the experiment. To determine the morpho-cultural properties, the following methods were used: Gram staining, a catalase test, serial dilutions. The Matrix Supported Laser Desorption/Ionization Flight Time Mass Spectrometry was used for identification, and the deferred-antagonism method was used to determine the antimicrobial activity. The buccal epithelial cells were used for the cell object as a test system to determine the adhesive activity. RESULTS: In this experiment, 26 lactobacillus isolates were isolated from 68 samples of national lactic acid products produced in a traditional homemade way in different districts of the Karaganda region (Kazakhstan). As a result of the studies carried out on the cultural and morphological characteristics and identification by the mass spectrometer, the following lactobacilli were obtained: Lactobacillus acidophilus (two strains), Lactobacillus delbrueckii subsp. bulgaricum (two strains), Lactobacillus rhamnosus (seven strains), Lactobacillus plantarum (two strains), Lactobacillus paracasei (11 strains), and Lactobacillus fermentum (two strains). Twenty-six isolates of lactobacilli were tested for antimicrobial activity, 13 isolates of which showed an inhibitory effect, but the degree of antagonism varied among lactobacillus isolates. In general, the inhibitory activity of lactobacillus isolates was shown against the Gram-negative indicator microorganisms Salmonella typhimurium NCTC 12023, Escherichia coli NCTC 12923. The antibacterial activity was shown against the Staphylococcus aureus NCTC 12973 indicator microorganism in nine isolates of lactobacilli. Only six isolates of lactobacilli showed antifungal activity against the test strain of Candida albicans NCPF 3179. Out of 13 isolates of lactobacilli, nine isolates of medium and high activity competed for binding to buccal epithelial cells. CONCLUSION: The obtained isolates from traditional dairy products are considered to be promising candidates and competitive isolates with some probiotic potential. This study calls for further researches to be made in this area.

2012 ◽  
Vol 3 (1) ◽  
pp. 23-32 ◽  
Author(s):  
A. Do Carmo ◽  
M. De Oliveira ◽  
D. Da Silva ◽  
S. Castro ◽  
A. Borges ◽  
...  

There are three main reasons for using lactic acid bacteria (LAB) as starter cultures in industrial food fermentation processes: food preservation due to lactic acid production; flavour formation due to a range of organic molecules derived from sugar, lipid and protein catabolism; and probiotic properties attributed to some strains of LAB, mainly of lactobacilli. The aim of this study was to identify some genes involved in lactose metabolism of the probiotic Lactobacillus delbrueckii UFV H2b20, and analyse its organic acid production during growth in skimmed milk. The following genes were identified, encoding the respective enzymes: ldh – lactate dehydrogenase, adhE – Ldb1707 acetaldehyde dehydrogenase, and ccpA-pepR1 – catabolite control protein A. It was observed that L. delbrueckii UFV H2b20 cultivated in different media has the unexpected ability to catabolyse galactose, and to produce high amounts of succinic acid, which was absent in the beginning, raising doubts about the subspecies in question. The phylogenetic analyses showed that this strain can be compared physiologically to L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis, which are able to degrade lactose and can grow in milk. L. delbrueckii UFV H2b20 sequences have grouped with L. delbrueckii subsp. bulgaricus ATCC 11842 and L. delbrueckii subsp. bulgaricus ATCC BAA-365, strengthening the classification of this probiotic strain in the NCFM group proposed by a previous study. Additionally, L. delbrueckii UFV H2b20 presented an evolutionary pattern closer to that of probiotic Lactobacillus acidophilus NCFM, corroborating the suggestion that this strain might be considered as a new and unusual subspecies among L. delbrueckii subspecies, the first one identified as a probiotic. In addition, its unusual ability to metabolise galactose, which was significantly consumed in the fermentation medium, might be exploited to produce low-browning probiotic Mozzarella cheeses, a desirable property for pizza cheeses.


2017 ◽  
Vol 10 (4) ◽  
pp. 309-318 ◽  
Author(s):  
P. Dawlal ◽  
C. Brabet ◽  
M.S. Thantsha ◽  
E.M. Buys

Maize, which contributes to a large portion of the African diet and serves as the base substrate for many fermented cereal products, has been reported to be contaminated with fumonisins. This study aimed to evaluate the in vitro ability of predominant lactic acid bacteria (LAB) in African traditional fermented maize based foods (ogi and mahewu) to bind fumonisin B1 (FB1) and B2 (FB2), as well as the stability of the complex at different pH and temperatures, in particular observed during ogi fermentation and under its storage conditions (time, temperature). The percentage of bound fumonisins was calculated after analysing the level of fumonisins not bound to LAB after a certain incubation time, by HPLC. The results revealed the ability of all tested LAB strains to bind both fumonisins, with binding efficiencies varying between strains and higher for FB2. Binding of fumonisins increased with a decrease in pH from 6 to 4 (observed during the ogi fermentation process) and from 4 to 2 (acidic pH in the stomach), and an increase in temperature (from 30 to 37 °C). The percentage of FB1 and FB2 bound to LAB at pH 4 decreased after 6 days of storage at 30 °C for all LAB strains, except for Lactobacillus plantarum (R1096) for which it increased. Lactobacillus species (L. plantarum and Lactobacillus delbrueckii) were the most efficient in binding FB1 and FB2, whereas Pediococcus sp. was less efficient. Therefore, the Lactobacillus strains tested in this study can be recommended as potential starter cultures for African traditional fermented maize based foods having detoxifying and probiotic properties.


2019 ◽  
Vol 69 (13) ◽  
pp. 1557-1565 ◽  
Author(s):  
Iulia-Roxana Angelescu ◽  
Medana Zamfir ◽  
Mihaela-Marilena Stancu ◽  
Silvia-Simona Grosu-Tudor

Abstract Purpose Scientific information regarding the microbial content and functional aspects of fermented beverages traditionally produced in certain parts of Europe are scarce. However, such products are believed to have some health benefits and might contain functional bacterial strains, such as probiotics. The aim of the study was to identify such lactic acid bacteria strains isolated from water kefir and, for the first time, from braga, a Romanian fermented beverage made of cereals. Methods Lactic acid bacteria (LAB) were identified to species level based on (GTG)5-PCR fingerprinting and 16S rRNA gene sequencing. Selected strains were screened for their antibacterial activity and probiotic potential. Results Eight isolates belonging to seven Lactobacillus species were recovered from the two drinks. The identification of LAB involved in the fermentation of braga (Lactobacillus plantarum, Lactobacillus fermentum, and Lactobacillus delbrueckii) is firstly reported here. Five of the Lactobacillus isolates showed antibacterial activity against pathogenic bacteria, including Listeria monocytogenes, Escherichia coli, Staphylococcus aureus, and Salmonella enterica. Moreover, most of them showed a good resistance to pH 2.5 and some survived at high concentrations of bile salts (up to 2%). Two L. plantarum isolates were able to inhibit all the indicator strains, and showed the best viability (about 70%) after a sequential treatment simulating the passage through the gastrointestinal tract. Conclusion Based on the results, the most promising candidates for designing new probiotic products are: L. plantarum BR9 from braga and L. plantarum CR1 from water kefir.


2014 ◽  
Vol 3 ◽  
Author(s):  
Lidia Stoyanova ◽  
Samat Kozhakhmetov ◽  
Almagul Kushugulova ◽  
Talgat Nurgozhin ◽  
Zhaxybay Zhumadilov ◽  
...  

Introduction. Kurunga is a dairy drink made of a mix of lactic acid and alcoholic fermentation, characterized by high biological value based on protein composition, amino acid spectrum, fatty acid composition of lipids, vitamin and mineral substances, and physiological activity of microbiota containing lactobacilli, lactococci, bifidobacteria, and yeast. Among the probiotic correctors of normal microbiota isolated from national products, lactobacilli was of particular interest, with regards to a therapeutic – preventive effect. The aim of the study was to examine the probiotic properties of lactobacilli from kurunga.Methods. We isolated lactic acid bacteria strains from kurunga. The isolated cultures were identified using common microbiological methods and phylogenetic analysis. The antibiotic activities of these strains were determined by measuring the growth inhibition zone of test cultures. The probiotic properties were measured as levels of resistance to bile and hydrochloric acids, in addition to the presence of superoxide dismutase (SOD) activity using the xanthine oxidase-cytochrome method. Proteolitic activity was determined at the various levels of pH (3.0, 4.2, 5.3, and 7.0).Results. According to the morphological, cultural, physiological, biochemical properties and the genotypic analysis of the oligonucleotides sequence of  specific genes, the most effective strain was  identified as Lactobacillus diolivorans KL-2 (GenBank database KC438372). The isolated strain suppressed the growth of Gram-positive bacteria, such as Bacillus, Staphylococcus, and Listeria sp., as well as Gram-negative bacteria, such as E.coli, Proteus, Salmonella sp. They also possessed fungicidal action (based on Penicillum, Aspergillus sp, and Candida sp.).  The strain was resistant to the action of the bile acids at concentrations of 0.8% to 1.0% and hydrochloric acid. The strain KL-2 possessed a relatively high SOD activity (25.74 U/mg of protein), a low proteolytic activity at a pH 3.0 (4.74·10-3 PU/ml), and high proteolytic activity at pH 4.2 (294.74·10-3 PU/ml), pH 5.3 (330.52·10-3 PU/ml) and pH 7.0 (713.68·10-3 PU/ml).Conclusion. The unique properties of this strain, such as stability in the gastrointestinal tract, the wide spectrum of bactericidal and fungicidal action to the pathogenic species, the relatively high superoxide dismutase and proteolytic activities, and the absence of  toxicity, make it a prime candidate for probiotic culturing.


2019 ◽  
Vol 6 (2) ◽  
Author(s):  
Murat Doğan ◽  
İsmail Hakkı Tekiner

This study aims to assess the probiotic properties of Lactic Acid Bacteria isolated from the traditional sourdoughs used for bread making in Turkey against some gut conditions. A total number of 29 samples from twelve provinces of Turkey were collected, and screened for the presence of lactic acid bacteria using microbiological methods. The microbiological screening yielded 148 presumptive isolates. Of them, 62.8% were characterized as lactic acid strains by VITEK® MS. Following that, the characterized isolates were subjected to probiotic property testing, including gastric acid resistance, bile resistance and hydrophobic ability. The results showed that 44.1% exceeded gastric pH resistance, 33.3% survived under gastrointestinal system bile salt conditions, and 10.8% exhibited high hydrophobicity ability. In conclusion, our study revealed that only 4.3% (1 Enterococcus faecium, 1 Lactobacillus brevis, 1 Lactobacillus pentosus, and 1 Lactobacillus plantarum) out of 93 lactic acid bacteria isolated from the traditional sourdoughs could meet all probiotic requirements against some gut conditions. 


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Rine Christopher Reuben ◽  
Pravas Chandra Roy ◽  
Shovon Lal Sarkar ◽  
Rubayet-Ul Alam ◽  
Iqbal Kabir Jahid

Abstract Background Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, are now accepted as suitable alternatives to antibiotics in the control of animal infections and improving animal production. Lactic acid bacteria (LAB) with remarkable functional properties have been evaluated in different studies as possible probiotic candidates. The purpose of this study was to isolate, characterize and assess the potentials of LAB from poultry gastrointestinal tract as potential poultry probiotics. Results Potential LAB probiotics were isolated from broilers, characterized and evaluated for probiotic properties including antagonistic activity (against Escherichia coli, E. coli O157: H7, Enterococcus faecalis, Salmonella Typhimurium, S. Enteritidis and Listeria monocytogenes), survivability in simulated gastric juice, tolerance to phenol and bile salts, adhesion to ileum epithelial cells, auto and co-aggregation, hydrophobicity, α–glucosidase inhibitory activity, and antibiotic susceptibility tests. Most promising LAB strains with excellent probiotic potentials were identified by API 50 CHL and 16S rRNA sequencing as Lactobacillus reuteri I2, Pediococcus acidilactici I5, P. acidilactici I8, P. acidilactici c3, P. pentosaceus I13, and Enterococcus faecium c14. They inhibited all the pathogens tested with zones of inhibition ranging from 12.5 ± 0.71 to 20 ± 0 mm, and competitively excluded (P < 0.05) the pathogens examined while adhering to ileum epithelial cells with viable counts of 3.0 to 6.0 Log CFU/ml. The selected LAB strains also showed significant (P < 0.005) auto and co-aggregation abilities with α-glucosidase inhibitory activity ranging from 12.5 to 92.0%. The antibiotic susceptibility test showed 100.00% resistance of the LAB strains to oxacillin, with multiple antibiotic resistance indices above 0.5. Conclusion The selected LAB strains are ideal probiotic candidates which can be applied in the field for the improvement of poultry performance and control of pathogens in poultry, hence curtailing further transmission to humans.


2021 ◽  
Vol 10 (9) ◽  
pp. e50010916964
Author(s):  
Leticia Riboldi Cavalli ◽  
Jalma Maria Klein ◽  
Ivana Greice Sandri ◽  
Rosmary Brandalise

This work focused on the development of biodegradable active packaging with poly(lactic acid) (PLA), poly(ethylene-co-vinyl acetate) (EVA), polyethylene glycol (PEG) and chitosan (QUI) blends. It investigated thermal and mechanical morphological characteristics of the blends, as the same time, the antifungal activity of the packaging. To assess the antimicrobial activity of the PLA/EVA/PEG/QUI blends, the samples were inserted between slices of bread with no preservative to the evaluation of their shelf life. By comparing between PLA/EVA/PEG, PLA/EVA/PEG/QUI blends and neat PLA was possible to evidence the partial miscibility, decreased glass transition temperature (Tg) by incorporating PEG into the blends, a decrease in flexural strength of 71% and elasticity modulus of 80.4% to PLA/EVA/PEG/2.5QUI blend, as well as an increase in elongation at break of 153% and 392% to impact toughness. A similar behavior was observed to PLA/EVA/20PEG and PLA/EVA/PEG/5.0QUI. The QUI-containing film among the bread slices has also influenced the water activity reduction, and reduced about 35% in the count of molds and yeasts in the slices of bread. Chitosan in mixtures with PLA/EVA/PEG showed potential as a natural antifungal agent in bakery packaging.


2019 ◽  
Vol 2 (2) ◽  
pp. 149
Author(s):  
Marin Georgiev ◽  
Maria Baltadjieva ◽  
Bogdan Goranov ◽  
Mariya Brazkova ◽  
Albert Krastanov

The antimicrobial activity of strains Lactobacillus delbrueckii ssp. bulgaricus MG1, Lactobacillus delbrueckii ssp. bulgaricus MG2, Lactobacillus delbrueckii ssp. bulgaricus MG3 and Lactobacillus delbrueckii ssp. bulgaricus MG4 has been investigated against pathogenic microorganisms Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 8739, Listeria monocytogenes, Salmonella sp. by the agar well diffusion method. The biomass, the culture medium and the cell-free supernatant were tested. The antibiotic resistance of the strains against clinical practice antibiotics with different mechanisms of action has been determined. The maximum specific growth rate and the parameters of the respective models for the selected strains was determined. The experiments established that Lactobacillus delbrueckii ssp. bulgaricus MG 3 exhibits the most pronounced antimicrobial activity compared to the other strains tested. Practical applicationsThis study was called for by the need to produce starter cultures with established purity and activity for use in the food industry. The aim of this work is to investigate a certain group of lactic acid bacteria widely used in practice and in the composition of starter cultures.


Author(s):  
Tchamba Mbiada Mervie Noël ◽  
Bouba Adji Mohammadou ◽  
Nodem Shanang Francky Steve ◽  
Léopold Ngoune Tatsadjieu ◽  
Mbarga Manga Joseph Arsene ◽  
...  

Background and Aim: Lactic acid bacteria (LAB) became a field of interest by scientists in recent years due to their technological and probiotic properties. The aim of this work was to study the technological and probiotic properties of LAB isolated from the bottle gourds (calabashes)of milk fermentation, in Mbéré, Cameroun. Methods: Five different bottle gourds from milk fermentation were collected and used for LAB isolation. These LABs were characterized using conventional cultural method, the technological (such as proteolytic, lipolytic activities) and probiotic properties (including acid and bile salt tolerance, cholesterol assimilation and antioxidant activities) were assessed. Results: From these samples, 30 LABs were isolated and among them, 21 exhibited great lipolytic and proteolytic activities with the maximum values of 18 and 29 mm respectively. In addition, 10 LAB isolates showed interesting antimicrobial activity against pathogens germs tested and good tolerance ability under acid and bile salt stress after 24h of incubation. Cholesterol assimilation and antioxidant tests revealed that isolated BC4 and BC3 have the greatest activity (35 and 39 mm respectively) while, BC4 and BL4 have the greatest antioxidant activity (IC50 = 0,15 and 0,13 respectively). Conclusion: LAB isolated from the bottle gourds (calabashes) of milk fermentation, in Mbéré, Cameroon can be used to develop dairy industry and manage the cardiovascular diseases.


Sign in / Sign up

Export Citation Format

Share Document