Characterisation of black soldier fly larva protein before and after conjugation by the Maillard reaction

2021 ◽  
pp. 1-16
Author(s):  
B. Zozo ◽  
M.M. Wicht ◽  
V.V. Mshayisa ◽  
J. van Wyk

Black soldier fly has been proposed as an alternative protein source sustainable for both food and feed due to its nutritional composition. The functional properties of this protein can be improved by inducing the Maillard reaction (MR) in protein-sugar mixtures. This study focused on the conjugation and characterisation of black soldier fly larvae (BSFL) proteins and conjugates. The defatted BSFL larvae were subjected to protein extraction at an alkaline pH. The protein extract was then conjugated with glucose. The BSFL protein and glucose were mixed at (2:1 w/w, pH 9), incubated at 50, 70, and 90 °C for 30, 60, 90 and 120 min. The products obtained were then characterised and compared. The changes were confirmed by universal attenuated total reflectance Fourier-transform infrared spectroscopy (UATR-FTIR), scanning electron microscopy, thermal gravimetric analysis and differential scanning calorimetry. UATR-FTIR combined with principal component analysis monitored the protein-sugar conjugates, to show the structural difference among heated proteins and conjugates. The heating treatments resulted in the unfolding and reduction of the protein molecule aggregation. The protein extract from the larvae was rich in protein content (67±0.78%) and displayed good essential amino acids (EAA) in sufficient quantities to meet the dietary requirements for humans. The EAA quantities of the conjugates decreased due to the MR treatment. The conjugates showed a significant decrease in the lysine content as a function of reaction temperature and time at 90 °C and 120 min, respectively. FTIR indicated that the amide I and II bands of the protein were altered by the MR. The increased Tmax (the temperature at which decomposition is completed) demonstrated that the conjugation of the protein with glucose improved the thermal stability, remarkably. These results suggested that MR with glucose can be a promising way to improve the thermal properties of BSFL protein.

BMC Chemistry ◽  
2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Daniel R. Flores ◽  
Luz E. Casados ◽  
Sandra F. Velasco ◽  
Ana C. Ramírez ◽  
Gilberto Velázquez

Abstract In the case of Tenebrionidae family insects, studies focus on larval stage, leaving a lack of information regarding other stages. Therefore, this study was performed in order to understand the differences between the nutritional composition and the bioactivity of two species of this family in their adult stage, fed with a specific diet. Adult beetles of both species were defatted, lyophilized and protein extracted with buffer. Proximal and phytochemical analysis of the extracts of each insect were performed, along with protein extract and hydrolysis analysis by Tris-Tricine and Tris Glycine SDS PAGE. This analysis showed that T. molitor contained more protein and fat than U. dermestoides but contained less crude fiber. The protein extraction was made with PBS, where 130 and 45 kDa bands showed predominant for U. dermestoides, and less protein was present for T. molitor. Antioxidant and antimicrobial activities of the enzymatic protein hydrolysates and protein crude extracts were determined. Presence of protein associated with the antioxidant activity were found in both insects. Nonetheless U. dermestoides had a higher antioxidant activity with the protein extract in contrast with the higher antioxidant activity shown by U. dermestoides once the extracts were digested. After proteolysis, protein extracts showed an increasing antioxidant activity, plus, the ability to inhibit microbial growth of Proteus, Shigella and Bacillus. Insect protein hydrolysates with protease open the possibility for the use of these beetles as new sources of encrypted peptides for microbiological control once characterized.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2977
Author(s):  
Lucas Sales Queiroz ◽  
Federico Casanova ◽  
Aberham Hailu Feyissa ◽  
Flemming Jessen ◽  
Fatemeh Ajalloueian ◽  
...  

The physical and oxidative stability of fish oil-in-water (O/W) emulsions were investigated using black soldier fly larvae (BSFL) (Hermetia illucens) protein concentrate as an emulsifier. To improve the protein extraction and the techno-functionality, defatted BSFL powder was treated with ohmic heating (BSFL-OH) and a combination of ohmic heating and ultrasound (BSFL-UOH). Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were performed in order to characterize the secondary structure and thermal stability of all protein concentrate samples. The interfacial properties were evaluated by the pendant drop technique. The lowest interfacial tension (12.95 mN/m) after 30 min was observed for BSFL-OH. Dynamic light scattering, ζ-potential and turbiscan stability index (TSI) were used to evaluate the physical stability of emulsions. BSFL-OH showed the smallest droplet size (0.68 μm) and the best emulsion stability (TSI = 8.89). The formation of primary and secondary volatile oxidation products and consumption of tocopherols were evaluated for all emulsions, revealing that OH and ultrasound treatment did not improve oxidative stability compared to the emulsion with untreated BSFL. The results revealed the promising application of BSFL proteins as emulsifiers and the ability of ohmic heating to improve the emulsifying properties of BSFL proteins.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1958
Author(s):  
Jolanta Tomaszewska-Gras ◽  
Mahbuba Islam ◽  
Liliana Grzeca ◽  
Anna Kaczmarek ◽  
Emilia Fornal

The aim of this study was to describe the thermal properties of selected cultivars of flaxseed oil by the use of the differential scanning calorimetry (DSC) technique. The crystallization and melting profiles were analyzed depending on different scanning rates (1, 2, 5 °C/min) as well as oxidative induction time (OIT) isothermally at 120 °C and 140 °C, and oxidation onset temperatures (Ton) at 2 and 5 °C/min were measured. The crystallization was manifested as a single peak, differing for a cooling rate of 1 and 2 °C/min. The melting curves were more complex with differences among the cultivars for a heating rate of 1 and 2 °C/min, while for 5 °C/min, the profiles did not differ, which could be utilized in analytics for profiling in order to assess the authenticity of the flaxseed oil. Moreover, it was observed that flaxseed oil was highly susceptible to thermal oxidation, and its stability decreased with increasing temperature and decreasing heating rate. Significant negative linear correlations were found between unsaturated fatty acid content (C18:2, C18:3 n-3) and DSC parameters (OIT, Ton). Principal component analysis (PCA) also established a strong correlation between total oxidation value (TOTOX), peroxide value (PV) and all DSC parameters of thermo-oxidative stability.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 511
Author(s):  
Roman Réh ◽  
Ľuboš Krišťák ◽  
Ján Sedliačik ◽  
Pavlo Bekhta ◽  
Monika Božiková ◽  
...  

The potential of using ground birch (Betula verrucosa Ehrh.) bark as an eco-friendly additive in urea-formaldehyde (UF) adhesives for plywood manufacturing was investigated in this work. Five-ply plywood panels were fabricated in the laboratory from beech (Fagus sylvatica L.) veneers bonded with UF adhesive formulations comprising three addition levels of birch bark (BB) as a filler (10%, 15%, and 20%). Two UF resin formulations filled with 10% and 20% wheat flour (WF) were used as reference samples. The mechanical properties (bending strength, modulus of elasticity and shear strength) of the laboratory-fabricated plywood panels, bonded with the addition of BB in the adhesive mixture, were evaluated and compared with the European standard requirements (EN 310 and EN 314-2). The mechanical strength of the plywood with the addition of BB in the adhesive mixture is acceptable and met the European standard requirements. Markedly, the positive effect of BB in the UF adhesive mixture on the reduction of formaldehyde emission from plywood panels was also confirmed. Initially, the most significant decrease in formaldehyde release (up to 14%) was measured for the plywood sample, produced with 15% BB. After four weeks, the decrease in formaldehyde was estimated up to 51% for the sample manufactured with 20% BB. The performed differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and derivative thermogravimetry (DTG), also confirmed the findings of the study. As this research demonstrated, BB as a waste or by-product of wood processing industry, can be efficiently utilized as an environmentally friendly, inexpensive alternative to WF as a filler in UF adhesive formulations for plywood manufacturing.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 758
Author(s):  
Verónica García Arteaga ◽  
Sonja Kraus ◽  
Michael Schott ◽  
Isabel Muranyi ◽  
Ute Schweiggert-Weisz ◽  
...  

Pea protein concentrates and isolates are important raw materials for the production of plant-based food products. To select suitable peas (Pisum sativum L.) for protein extraction for further use as food ingredients, twelve different cultivars were subjected to isoelectric precipitation and spray drying. Both the dehulled pea flours and protein isolates were characterized regarding their chemical composition and the isolates were analyzed for their functional properties, sensory profiles, and molecular weight distributions. Orchestra, Florida, Dolores, and RLPY cultivars showed the highest protein yields. The electrophoretic profiles were similar, indicating the presence of all main pea allergens in all isolates. The colors of the isolates were significantly different regarding lightness (L*) and red-green (a*) components. The largest particle size was shown by the isolate from Florida cultivar, whereas the lowest was from the RLPY isolate. At pH 7, protein solubility ranged from 40% to 62% and the emulsifying capacity ranged from 600 to 835 mL g−1. The principal component analysis revealed similarities among certain pea cultivars regarding their physicochemical and functional properties. The sensory profile of the individual isolates was rather similar, with an exception of the pea-like and bitter attributes, which were significantly different among the isolates.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2575
Author(s):  
Smaher M. Elbayomi ◽  
Haili Wang ◽  
Tamer M. Tamer ◽  
Yezi You

The preparation of bioactive polymeric molecules requires the attention of scientists as it has a potential function in biomedical applications. In the current study, functional substitution of alginate with a benzoyl group was prepared via coupling its hydroxyl group with benzoyl chloride. Fourier transform infrared spectroscopy indicated the characteristic peaks of aromatic C=C in alginate derivative at 1431 cm−1. HNMR analysis demonstrated the aromatic protons at 7.5 ppm assigned to benzoyl groups attached to alginate hydroxyl groups. Wetting analysis showed a decrease in hydrophilicity in the new alginate derivative. Differential scanning calorimetry and thermal gravimetric analysis showed that the designed aromatic alginate derivative demonstrated higher thermo-stability than alginates. The aromatic alginate derivative displayed high anti-inflammatory properties compared to alginate. Finally, the in vitro antioxidant evaluation of the aromatic alginate derivative showed a significant increase in free radical scavenging activity compared to neat alginate against DPPH (2,2-diphenyll-picrylhydrazyl) and ABTS free radicals. The obtained results proposed that the new alginate derivative could be employed for gene and drug delivery applications.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1879
Author(s):  
Oladipupo Q. Adiamo ◽  
Yasmina Sultanbawa ◽  
Daniel Cozzolino

In recent times, the popularity of adding value to under-utilized legumes have increased to enhance their use for human consumption. Acacia seed (AS) is an underutilized legume with over 40 edible species found in Australia. The study aimed to qualitatively characterize the chemical composition of 14 common edible AS species from 27 regions in Australia using mid-infrared (MIR) spectroscopy as a rapid tool. Raw and roasted (180 °C, 5, 7, and 9 min) AS flour were analysed using MIR spectroscopy. The wavenumbers (1045 cm−1, 1641 cm−1, and 2852–2926 cm−1) in the MIR spectra show the main components in the AS samples. Principal component analysis (PCA) of the MIR data displayed the clustering of samples according to species and roasting treatment. However, regional differences within the same AS species have less of an effect on the components, as shown in the PCA plot. Statistical analysis of absorbance at specific wavenumbers showed that roasting significantly (p < 0.05) reduced the compositions of some of the AS species. The results provided a foundation for hypothesizing the compositional similarity and/or differences among AS species before and after roasting.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 275
Author(s):  
Chung Yiin Wong ◽  
Kunlanan Kiatkittipong ◽  
Worapon Kiatkittipong ◽  
Seteno K. O. Ntwampe ◽  
Man Kee Lam ◽  
...  

Oftentimes, the employment of entomoremediation to reduce organic wastes encounters ubiquitous shortcomings, i.e., ineffectiveness to valorize recalcitrant organics in wastes. Considering the cost-favorability, a fermentation process can be employed to facilitate the degradation of biopolymers into smaller organics, easing the subsequent entomoremediation process. However, the efficacy of in situ fermentation was found impeded by the black soldier fly larvae (BSFL) in the current study to reduce coconut endosperm waste (CEW). Indeed, by changing into ex situ fermentation, in which the fungal Rhizopus oligosporus was permitted to execute fermentation on CEW prior to the larval feeding, the reduction of CEW was significantly enhanced. In this regard, the waste reduction index of CEW by BSFL was almost doubled as opposed to in situ fermentation, even with the inoculation of merely 0.5 wt % of Rhizopus oligosporus. Moreover, with only 0.02 wt % of fungal inoculation size to execute the ex situ fermentation on CEW, it could spur BSFL growth by about 50%. Finally, from the statistical correlation study using principal component analysis, the presence of Rhizopus oligosporus in a range of 0.5–1.0 wt % was regarded as optimum to ferment CEW via ex situ mode, prior to the valorization by BSFL in reducing the CEW.


Molecules ◽  
2020 ◽  
Vol 25 (9) ◽  
pp. 2158
Author(s):  
Nanci Vanesa Ehman ◽  
Diana Ita-Nagy ◽  
Fernando Esteban Felissia ◽  
María Evangelina Vallejos ◽  
Isabel Quispe ◽  
...  

Bio-polyethylene (BioPE, derived from sugarcane), sugarcane bagasse pulp, and two compatibilizers (fossil and bio-based), were used to manufacture biocomposite filaments for 3D printing. Biocomposite filaments were manufactured and characterized in detail, including measurement of water absorption, mechanical properties, thermal stability and decomposition temperature (thermo-gravimetric analysis (TGA)). Differential scanning calorimetry (DSC) was performed to measure the glass transition temperature (Tg). Scanning electron microscopy (SEM) was applied to assess the fracture area of the filaments after mechanical testing. Increases of up to 10% in water absorption were measured for the samples with 40 wt% fibers and the fossil compatibilizer. The mechanical properties were improved by increasing the fraction of bagasse fibers from 0% to 20% and 40%. The suitability of the biocomposite filaments was tested for 3D printing, and some shapes were printed as demonstrators. Importantly, in a cradle-to-gate life cycle analysis of the biocomposites, we demonstrated that replacing fossil compatibilizer with a bio-based compatibilizer contributes to a reduction in CO2-eq emissions, and an increase in CO2 capture, achieving a CO2-eq storage of 2.12 kg CO2 eq/kg for the biocomposite containing 40% bagasse fibers and 6% bio-based compatibilizer.


Sign in / Sign up

Export Citation Format

Share Document