scholarly journals Modeling bacterial attachment to surfaces as an early stage of biofilm development

2013 ◽  
Vol 10 (3) ◽  
pp. 821-842 ◽  
2012 ◽  
Vol 287 (42) ◽  
pp. 35092-35103 ◽  
Author(s):  
Yizhou Zhou ◽  
Daniel Smith ◽  
Bryan J. Leong ◽  
Kristoffer Brännström ◽  
Fredrik Almqvist ◽  
...  

Amyloids are highly aggregated proteinaceous fibers historically associated with neurodegenerative conditions including Alzheimers, Parkinsons, and prion-based encephalopathies. Polymerization of amyloidogenic proteins into ordered fibers can be accelerated by preformed amyloid aggregates derived from the same protein in a process called seeding. Seeding of disease-associated amyloids and prions is highly specific and cross-seeding is usually limited or prevented. Here we describe the first study on the cross-seeding potential of bacterial functional amyloids. Curli are produced on the surface of many Gram-negative bacteria where they facilitate surface attachment and biofilm development. Curli fibers are composed of the major subunit CsgA and the nucleator CsgB, which templates CsgA into fibers. Our results showed that curli subunit homologs from Escherichia coli, Salmonella typhimurium LT2, and Citrobacter koseri were able to cross-seed in vitro. The polymerization of Escherichia coli CsgA was also accelerated by fibers derived from a distant homolog in Shewanella oneidensis that shares less than 30% identity in primary sequence. Cross-seeding of curli proteins was also observed in mixed colony biofilms with E. coli and S. typhimurium. CsgA was secreted from E. coli csgB− mutants assembled into fibers on adjacent S. typhimurium that presented CsgB on its surfaces. Similarly, CsgA was secreted by S. typhimurium csgB− mutants formed curli on CsgB-presenting E. coli. This interspecies curli assembly enhanced bacterial attachment to agar surfaces and supported pellicle biofilm formation. Collectively, this work suggests that the seeding specificity among curli homologs is relaxed and that heterogeneous curli fibers can facilitate multispecies biofilm development.


2015 ◽  
Vol 78 (8) ◽  
pp. 1554-1559 ◽  
Author(s):  
RONG WANG ◽  
NORASAK KALCHAYANAND ◽  
JAMES L. BONO

Bacterial biofilms are one of the potential sources of cross-contamination in food processing environments. Shiga toxin–producing Escherichia coli (STEC) O157:H7 and O111:H8 are important foodborne pathogens capable of forming biofilms, and the coexistence of these two STEC serotypes has been detected in various food samples and in multiple commercial meat plants throughout the United States. Here, we investigated how the coexistence of these two STEC serotypes and their sequence of colonization could affect bacterial growth competition and mixed biofilm development. Our data showed that E. coli O157:H7 strains were able to maintain a higher cell percentage in mixed biofilms with the co-inoculated O111:H8 companion strains, even though the results of planktonic growth competition were strain dependent. On solid surfaces with preexisting biofilms, the sequence of colonization played a critical role in determining the composition of the mixed biofilms because early stage precolonization significantly affected the competition results between the E. coli O157:H7 and O111:H8 strains. The precolonizer of either serotype was able to outgrow the other serotype in both planktonic and biofilm phases. The competitive interactions among the various STEC serotypes would determine the composition and structure of the mixed biofilms as well as their potential risks to food safety and public health, which is largely influenced by the dominant strains in the mixtures. Thus, the analysis of mixed biofilms under various conditions would be of importance to determine the nature of mixed biofilms composed of multiple microorganisms and to help implement the most effective disinfection operations accordingly.


2019 ◽  
Vol 8 (38) ◽  
Author(s):  
Izumi Mashima ◽  
Tohru Miyoshi-Akiyama ◽  
Junko Tomida ◽  
Ryo Kutsuna ◽  
Jumpei Washio ◽  
...  

To date, Veillonella tobetsuensis has been known as an oral anaerobe and a facilitator of early-stage oral biofilm development with streptococci. Here, we report the draft genome sequences of 2 strains of V. tobetsuensis first isolated from intraoperative bronchial fluids of elderly patients with pulmonary carcinoma.


2017 ◽  
Vol 20 (3&4) ◽  
pp. 361-372
Author(s):  
B. Suraraksa ◽  
A. Nopharatana ◽  
P. Chaiprasert ◽  
S. Bhumiratana ◽  
M. Tanticharoen

To elucidate the effect of substrate concentration on biofilm development, glucose concentrations of 500 and 1,000 mg/L were used.  At an early stage, biofilm development at both concentrations was not significantly different (P=0.621).  After removing suspended biomass at 24 operational hours, the biofilm development at high substrate concentration was higher than at lower concentration.  At 72 operational hours, the amounts of attached biomass at low and high glucose feeding were 9.04±1.17 and 28.58±2.72 g VSS/m2, respectively.  The activities of acidogens, acetogens, and methanogens at the low glucose concentration were 0.334, 0.016 and 0.003 g COD/g VSS/h, and those at the high glucose concentration were 0.145, 0.003 and 0.001 g COD/g VSS/h, respectively.  Moreover, the ratio of methanogenic activity at low glucose concentration was higher than at high glucose concentration.  The glucose utilization at low and high feeding concentrations was 33% and 27%, respectively.  These results indicated that rapid biofilm development by using high substrate concentration would be less beneficial if unbalance of methanogenic ratio was found in biofilm.


2022 ◽  
Vol 12 ◽  
Author(s):  
Aihua Luo ◽  
Fang Wang ◽  
Degang Sun ◽  
Xueyu Liu ◽  
Bingchang Xin

Biofilms, which are essential vectors of bacterial survival, protect microbes from antibiotics and host immune attack and are one of the leading causes that maintain drug-resistant chronic infections. In nature, compared with monomicrobial biofilms, polymicrobial biofilms composed of multispecies bacteria predominate, which means that it is significant to explore the interactions between microorganisms from different kingdoms, species, and strains. Cross-microbial interactions exist during biofilm development, either synergistically or antagonistically. Although research into cross-species biofilms remains at an early stage, in this review, the important mechanisms that are involved in biofilm formation are delineated. Then, recent studies that investigated cross-species cooperation or synergy, competition or antagonism in biofilms, and various components that mediate those interactions will be elaborated. To determine approaches that minimize the harmful effects of biofilms, it is important to understand the interactions between microbial species. The knowledge gained from these investigations has the potential to guide studies into microbial sociality in natural settings and to help in the design of new medicines and therapies to treat bacterial infections.


2018 ◽  
Vol 53 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Kyungsun Kim ◽  
Jung-Sub An ◽  
Bum-Soon Lim ◽  
Sug-Joon Ahn

Bisphenol A glycidyl methacrylate (bis-GMA), which is released into the oral environment by dental composites through incomplete polymerization, hydrolysis, and mechanical degradation, can significantly influence oral ecology around resin-based materials. The purpose of this study was to investigate how bis-GMA changes the virulence properties of Streptococcus mutans, a major cariogenic bacterium in humans. The results show that bis-GMA not only inhibited the planktonic growth of cells in medium containing glucose, fructose, or mannose, but also reduced the viability of S. mutans. However, the presence of bis-GMA increased sugar transport and intracellular polysaccharide accumulation in S. mutans, thereby increasing the potential of cell persistence. In addition, bis-GMA could enhance S. mutans’s adhesion to hard surfaces and glucan synthesis, which could contribute to biofilm formation. Although free bis-GMA made cells vulnerable to acidic stress, it also provided increased resistance to hydrogen peroxide, which might confer an advantage in competition with other oral microorganisms during the early stage of biofilm development. Interestingly, the presence of bis-GMA did not change the ability of S. mutans to interact with saliva. The results suggest that leachable bis-GMA could contribute to biofilm-related secondary dental caries at the marginal interface between resin-based materials and teeth by altering the virulent properties of S. mutans, although bis-GMA reduced the planktonic growth and viability of S. mutans.


Microbiology ◽  
2010 ◽  
Vol 156 (8) ◽  
pp. 2408-2417 ◽  
Author(s):  
Timo A. Lehti ◽  
Philippe Bauchart ◽  
Johanna Heikkinen ◽  
Jörg Hacker ◽  
Timo K. Korhonen ◽  
...  

The mat (or ecp) fimbrial operon is ubiquitous and conserved in Escherichia coli, but its functions remain poorly described. In routine growth media newborn meningitis isolates of E. coli express the meningitis-associated and temperature-regulated (Mat) fimbria, also termed E. coli common pilus (ECP), at 20 °C, and here we show that the six-gene (matABCDEF)-encoded Mat fimbria is needed for temperature-dependent biofilm formation on abiotic surfaces. The matBCDEF deletion mutant of meningitis E. coli IHE 3034 was defective in an early stage of biofilm development and consequently unable to establish a detectable biofilm, contrasting with IHE 3034 derivatives deleted for flagella, type 1 fimbriae or S-fimbriae, which retained the wild-type biofilm phenotype. Furthermore, induced production of Mat fimbriae from expression plasmids enabled biofilm-deficient E. coli K-12 cells to form biofilm at 20 °C. No biofilm was detected with IHE 3034 or MG1655 strains grown at 37 °C. The surface expression of Mat fimbriae and the frequency of Mat-positive cells in the IHE 3034 population from 20 °C were high and remained unaltered during the transition from planktonic to biofilm growth and within the matured biofilm community. Considering the prevalence of the highly conserved mat locus in E. coli genomes, we hypothesize that Mat fimbria-mediated biofilm formation is an ancestral characteristic of E. coli.


2020 ◽  
Vol 6 (22) ◽  
pp. eaaz9386
Author(s):  
Sung-Ha Hong ◽  
Jean-Baptiste Gorce ◽  
Horst Punzmann ◽  
Nicolas Francois ◽  
Michael Shats ◽  
...  

Formation of bacterial biofilms on solid surfaces within a fluid starts when bacteria attach to the substrate. Understanding environmental factors affecting the attachment and the early stages of the biofilm development will help develop methods of controlling the biofilm growth. Here, we show that biofilm formation is strongly affected by the flows in thin layers of bacterial suspensions controlled by surface waves. Deterministic wave patterns promote the growth of patterned biofilms, while wave-driven turbulent motion discourages patterned attachment of bacteria. Strong biofilms form under the wave antinodes, while inactive bacteria and passive particles settle under nodal points. By controlling the wavelength, its amplitude, and horizontal mobility of the wave patterns, one can shape the biofilm and either enhance the growth or discourage the formation of the biofilm. The results suggest that the deterministic wave-driven transport channels, rather than hydrodynamic forces acting on microorganisms, determine the preferred location for the bacterial attachment.


1994 ◽  
Vol 30 (11) ◽  
pp. 35-45 ◽  
Author(s):  
Akiyoshi Ohashi ◽  
Hideki Harada

In this study the in situ behavior of biofilm development and detachment was continuously observed by a video camera. The model biofilms consisting of denitrifiers were formed on the flat surfaces of polyvinyl-chloride plates that were placed in a rectangular open-channel reactor. The effects of intrinsic biofilm properties on biofilm detachment, such as intrafilm gas-vacuoles formation, extracellular biopolymer (ECP) content, biofilm density and cavity formation at the biofilm/substratum interface were quantified using attached-biofilms onto flat substrata. The result indicated that there were three phenotypes of massive biofilm detachment (see Fig. 4) under the conditions of low shear stress of flow. The first type showed that a large fraction (approximately 1/4-1/3) of the biofilm was sloughed off as a whole layer from the substratum surface at a relatively early stage of biofilm formation. This type was primarily caused by the cavity formation and by the decrease of ECP content. Succeeding to the first type, the second type occurred as fragmentary detachments. The second phenomenon was attributable to the increase in biofilm buoyancy due to the gas-vacuoles formation within the biofilm. The third type took place as the combination of the first and the second types following the occurrence of the second type. In contrast, at a higher flow shear stress only the second type of detachment became prevalent throughout the progression of biofilm formation.


2011 ◽  
Vol 31 (6) ◽  
pp. 672-678 ◽  
Author(s):  
Karin Jung ◽  
Petra Lüthje ◽  
Joachim Lundahl ◽  
Annelie Brauner

BackgroundPeritonitis is a common and serious complication of peritoneal dialysis (PD). Coagulase-negative staphylococci from the patient's own skin flora are the most commonly found micro-organisms.ObjectiveIn the present study we aim to elucidate the immune response in the early stage of infection and to clarify the importance of bacterial attachment to fibrinogen.MethodsClinical Staphylococcus epidermidis isolates collected from PD peritonitis or the residential skin flora of healthy individuals were used to infect monocytes, macrophages, and peripheral blood mononuclear cells (PBMC) in the presence or absence of fibrinogen. The S. epidermidis strain HB (fbe+), expressing the fibrinogen-binding protein Fbe, and its isogenic mutant STO56 (fbe–) were used to study the impact of Fbe during cell infection. Immune induction was measured as interleukin-8 (IL-8) production determined by ELISA. Modulation of CD11b/CD18 expression in neutrophils incubated in conditioned medium from these experiments was analyzed in order to judge the cellular response.ResultsS. epidermidis causing peritonitis was less immunogenic compared to strains belonging to the residential skin flora, as measured by IL-8 induction in monocytes and CD11b/CD18 expression in neutrophils. At low bacterial concentrations, attachment to fibrinogen was a prerequisite for an IL-8 induction in monocytes and PBMC. The fibrinogen-binding protein Fbe did not, however, influence immune induction under this condition.ConclusionsWe suggest that S. epidermidis strains may be able to cause clinical infection by evoking an inadequate immunological response in the early stage of infection. Bacterial attachment to fibrinogen is a relevant event during this phase but independent of the fibrinogen-binding protein Fbe.


Sign in / Sign up

Export Citation Format

Share Document