Application of Meta-Models (MPMR and ELM) for Determining OMC, MDD and Soaked CBR Value of Soil

Author(s):  
Vishal Shreyans Shah ◽  
Henyl Rakesh Shah ◽  
Pijush Samui

This chapter examines the capability of Minimax Probability Machine Regression (MPMR) and Extreme Learning Machine (ELM) for prediction of Optimum Moisture Content (OMC), Maximum Dry Density (MDD) and Soaked California Bearing Ratio (CBR) of soil. These algorithms can analyse data and recognize patterns and are proved to be very useful for problems pertaining to classification and regression analysis. These regression models are used for prediction of OMC and MDD using Liquid limit (LL) and Plastic limit (PL) as input parameters. Whereas Soaked CBR is predicted using Liquid limit, Plastic limit, OMC and MDD as input parameters. The predicted values obtained from the MPMR and ELM models have been compared with that obtained from Artificial Neural Networks (ANN). The accuracy of MPMR and ELM models, their performance and their reliability with respect to ANN models has also been evaluated.

Author(s):  
Jitendra Khatti ◽  
◽  
Kamaldeep Singh Grover ◽  

The Gaussian Process Regression (GPR), Decision Tree (DT), Relevance Vector Machine (RVM), and Artificial Neural Network (ANN) AI approaches are constructed in MATLAB R2020a with different hyperparameters namely, kernel function, leaf size, backpropagation algorithms, number of neurons and hidden layers to compute the permeability of soil. The present study is carried out using 158 datasets of soil. The soil dataset consists of fine content (FC), sand content (SC), liquid limit (LL), specific gravity (SG), plasticity index (PI), maximum dry density (MDD) and optimum moisture content (OMC), permeability (K). Excluding the permeability of soil, rest of properties of soil is used as input parameters of the AI models. The best architectural and optimum performance models are identified by comparing the performance of the models. Based on the performance of the AI models, the NISEK_K_GPR, 10LF_K_DT, Poly_K_RVM, and GDANN_K_10H5 models have been identified as the best architectural AI models. The comparison of performance of the best architectural models, it is observed that the NISEK_K_GPR model outperformed the other best architectural AI models. In this study, it is also observed that GPR model is outperformed ANN models because of small dataset. The performance of NISEK_K_GPR model is compared with models available in literature and it is concluded that the GPR model has better performance and least prediction error than models available in literature study.


we have done some experiments on black cotton soil to strengthen the soil. Black cotton soil is very expansive soil so it is not used under basements for any building works. So our experiment shows that how to use black cotton soil in building purposes. So that we have done researches on adding lime and pond ash to make useful of black cotton soil.Changes in various soil properties such as Liquid limit, Plastic Limit, Maximum Dry Density, Optimum Moisture Content were studied. Keywords– Black cotton soil, density, will lime, soil, and stabilization. So we have done the some mixed proportions of 10%, 15% and 20% of pond and lime. So we utilize the waste material which comes from the thermal power plant. By that we can decrease the rate of expenditure for the construction of roads Based upon the performance of the test such as standard proctor test and other to know the required amount of the material to stabilize the black cotton soil.


2019 ◽  
Vol 9 (2) ◽  
pp. 93-99
Author(s):  
Hunar F. Hama Ali ◽  
Ahmed J. Hama Rash ◽  
Madeh I. Hama kareem ◽  
Daban A. Muhedin

This paper addresses the correlation between the liquid and/or plastic limits with the compaction characteristics, maximum dry density, and optimum moisture content (OMC), for fine-grained soils. In the previous studies, several attempts have been made to identify these two important parameters from other simple soil properties such as index soil properties. Some concluded that liquid limit shows a good correlation with compaction characteristics, while others observed that plastic limit does. In this work, many soil samples have been taken from various locations around Koya city and the required tests have been carried out. The results have been illustrated to identify whether soil index properties can correlate with the compaction characteristics. It is concluded that neither plastic limit nor liquid limit can provide an adequate correlation with maximum dry density and OMC. Contrary to the literature, liquid limit provides better correlations.


2020 ◽  
Vol 8 (1) ◽  
pp. 22
Author(s):  
G.O Adunoye ◽  
A.A Ojo ◽  
A.F Alasia ◽  
M.O Olarewaju

The importance of soil compaction for civil engineering construction and application cannot be over-emphasised. To perform soil compaction, numerous number of samples are required, with considerable time and laborious laboratory activities. This has necessitated the need to find models for the prediction of compaction characteristics, using easily determined soil properties. This work therefore undertook a study of the correlation potential of compaction characteristics and Atterberg limits of soils, with a view to modelling compaction characteristics, using Atterberg limits. To achieve this aim, soil samples were obtained from selected locations within Obafemi Awolowo University campus, Ile-Ife, Nigeria. Preliminary, Atterberg limits and compaction tests were conducted on the soil samples, using standard procedure. Using Microsoft Excel and Xuru’s Regression tool, the laboratory test results were used to develop relationships between compaction characteristics (optimum moisture content and maximum dry density) and Atterberg limits (liquid limit and plastic limit). Results showed that the natural moisture content of soil samples ranged between 4.97 % and 19.72 %; liquid limit ranged between 27 % and 68 %; plastic limit ranged between 18.92 % and 63.01 %; and plasticity index ranged between 0.94 % and 14.63 %. The optimum moisture content ranged between 6.7 % and 27 %, while the maximum dry density ranged between 1560 kN/m3 and 2260 kN/m3. The results of regression analysis showed that the combination of liquid limit and plastic limit has a strong correlation with optimum moisture content (R2 = 0.870); while the combination (of liquid limit and plastic limit) showed a weak correlation with maximum dry density (R2 = 0.150). The study concluded that liquid limit and plastic limit could be used to estimate the optimum moisture content of the soils, by applying the developed relationship/equation.  


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ubido Oyem Emmanuel ◽  
Igwe Ogbonnaya ◽  
Ukah Bernadette Uche

AbstractInvestigation into the cause of road failure has been carried out along a 60 km long Sagamu –Papalanto highway southwestern Nigeria. Geochemical, mineralogical, geotechnical and geophysical analyses were conducted to evaluate the cause of failure along the study area. The results of the laboratory tests showed that the percentage amount of fines ranges from 12 to 61.3%, natural moisture content from 6.8 to 19.7%, liquid limit in the range of 25.1–52.2%, linear shrinkage between 3.96 to 12.71%, plastic limit ranges from 18.2–35%, plasticity index ranges from 5.2 to 24.6%, free swell in the range from 5.17–43.9%, maximum dry density ranges from 1.51–1.74 g /cm3, specific gravity ranges from 2.52–2.64 and CBR between 3 and 12%. The Cone Penetrometer Test (CPT) shows a resistance value of 20–138 kgf/cm2. The major clay mineral that is predominant in the studied soil is kaolinite. The major oxides present are SiO2, Al2O3, Fe2O3, K2O, Na2O, MgO and CaO. The result of the 2D Electrical Resistivity Imaging revealed a low resistivity values for profile 2 and 3 ranging from 100 Ωm – 300 Ωm, between a distance of 20 m – 240 m along the profile to a depth of 7.60 m and a low resistivity value ranging from 50 Ωm – 111Ωm, between a distance of 80 m − 120 m along the profile to a depth of 15 m. It was concluded that the low CBR, low MDD and the class of subsoils namely A-26, A-7, A-2-7 (clayey soils) which were identified are responsible for the cause of failure experienced in the study area. These makes the soils unsuitable as road construction materials and hence, there is need for stabilization during the reconstruction and rehabilitation of the road.


2018 ◽  
Vol 162 ◽  
pp. 01020 ◽  
Author(s):  
Nahla Salim ◽  
Kawther Al-Soudany ◽  
Nora Jajjawi

All structures built on soft soil may experience uncontrollable settlement and critical bearing capacity. This may not meet the design requirements for the geotechnical engineer. Soil stabilization is the change of these undesirable properties in order to meet the requirements. Traditional methods of stabilizing or through in-situ ground improvement such as compaction or replacement technique is usually costly. Now a safe and economic disposal of industrial wastes and development of economically feasible ground improvement techniques are the important challenges being faced by the engineering community. This work focuses on improving the soft soil brought from Baghdad by utilizing the local waste material for stabilization of soil, such as by using “Nylon carry bag’s by product” with the different percentage and corresponding to 1 %, 3% and 5% (the portion of stabilizer matters to soil net weight) of dried soil. The results indicated that as Nylon’s fiber content increases, the liquid limit decreases while the plastic limit increases, so the plasticity index decreases. Furthermore, the maximum dry density decreases while, the optimum moisture content increases as the Nylon’s fiber percentage increases. The compression index (decreases as the Nylon’s fiber increases and provides a maximum of 43% reduction by adding 5% nylon waste material. In addition, the results indicated that, the undrained shear strength increases as the nylon fiber increases.


2021 ◽  
Vol 42 (3) ◽  
Author(s):  
Sara Mansouri ◽  
Mehran Nasiri ◽  
Amir Modarres

Many pozzolans are waste products from industrial processes. Every year a huge amount of coal waste is gathered from the coal washing plant in the Hyrcanian forests of Iran. These materials can be used for soil stabilization in construction and maintenance projects of forest roads. This paper aims to (a) investigate the role of coal waste (CW) as a soil stabilizer and (b) determine the changes in soil specification regarding the environmental pollution in different combinations of materials (soil, lime (4 and 6%) and CW (3, 6, 9 and 12%)). For this purpose, different technical and environmental analysis and laboratory tests were performed. Technical tests showed that the soil liquid limit and maximum dry density decreased with an increase in lime and CW contents. Addition of CW could increase the soil CBR, UCS and OMC. According to XRD test, the addition of CW and lime can increase the size of crystals in stabilized soil samples. Environmental analysis showed that the use of stabilizer significantly reduced the concentration of heavy metals such as Cd, Cr and Pb. Also, all of the metal concentrations leached from samples satisfied the required criteria, but the addition of lime and CW increased the concentration of N, P, and K. These changes can increase the invasive species consistent with calcareous soil conditions along the roads. According to the results, the combination of coal waste and lime can be one of the best methods for in situ remediation. It would, however, be better to use a minimum amount of stabilizer in pavement layers of access roads due to environmental sensitivity.


2021 ◽  
pp. 3417-3427
Author(s):  
Amera I. Hussain Hussain ◽  
Ibraheem I. Ibraheem

      In this research, a geotechnical assessment was conducted for clay of the Gercus Formation to determine its suitability for embankment dams. The selected area is located in the north of Iraq. Six samples were collected from two sites in Dokan (Sulaimaniyah) and Haibat Sultan mountain (Koysinjaq), three samples each. Various geotechnical (physical, mechanical and chemical) tests were conducted based on standard specifications.      The results of the grain size test of clay samples showed their conformity with Zone C curves and their suitability for the construction of embankment dams, according to the Iraqi standard for roads and bridges.  The results of the plasticity limits test showed that the soil is made of fine, low plasticity silt (ML), and low plasticity clay (CL), according to the unified standard soil classification. The water content and plasticity limit tests (liquid limit, plastic limit, and plasticity index) demonstrated that these clays are conformable with the limits of the Iraqi standards. The results of the modified compaction test found a maximum dry density value of 1.962 g/cm3 with an optimum moisture content of 11.5%. The results of the permeability index (K) revealed low permeability according to the Das classification and, therefore, showed the suitability of the samples as raw filling materials in the construction of dams. Chemical tests (sulfate content, organic materials content, total dissolved salts, gypsum content, and pH value) showed compatibility with the requirements for the use in dams construction under the Iraqi standard (SoRB/ R5).


2018 ◽  
Vol 9 (1) ◽  
pp. 68 ◽  
Author(s):  
Samnang Phoak ◽  
Ya-Sheng Luo ◽  
Sheng-Nan Li ◽  
Qian Yin

In this study, the influence of fly ash (FA) content (0%, 10%, 20%, and 30%) on the alteration in the physical and mechanical parameters of loess is investigated. The influences of curing time (0, 14, and 28 days) and submergence and non-submergence conditions are analyzed as well. Analysis considers the variation in Atterberg limits (liquid limit, plastic limit, and plasticity index), compaction parameters (optimum moisture content (OMC), and maximum dry density (MDD)), unconfined compressive strength (UCS) stress, UCS strain, California bearing ratio (CBR) value, and swell potential. Results show that the application of FA-stabilized loess (FASL) is effective. Specifically, the MDD decreases and the OMC increases, the UCS stress increases and the UCS strain decreases, the CBR value improves and the swell potential declines, but Atterberg limits are insignificantly changed by the increase in the FA ratio compared with those of untreated loess. The UCS stress and CBR value are improved with the increase in curing time, whereas the UCS strain is negligible. FASL under submergence condition plays an important role in improving the effect of FA on the UCS stress and CBR value compared with that under non-submergence condition. The UCS stress and CBR value are more increased and more decreased than the UCS strain in submerged samples. Therefore, the application of FASL in flood areas is important for obtaining sustainable construction materials and ensuring environmental protection.


2021 ◽  
Author(s):  
OYEM EMMANUEL UBIDO ◽  
Igwe Ogbonnaya ◽  
Bernadette Uche Ukah

Abstract Investigation into the cause of road failure has been carried out along a 60km long Sagamu –Papalanto highway southwestern Nigeria. Geochemical, mineralogical, geotechnical and geophysical analyses were conducted to evaluate the cause of failure along the study area. The results of the laboratory tests showed that the percentage amount of fines ranges from 12-61.3%, natural moisture content from 6.8 to 19.7%, liquid limit in the range of 25.1-52.2%, linear shrinkage between 3.96 to 12.71%, plastic limit ranges from 18.2-35%, plasticity index ranges from 5.2 to 24.6%, free swell in the range from 5.17 – 43.9%, maximum dry density ranges from 1.51 -1.74g /cm3, specific gravity ranges from 2.52-2.64 and CBR between 3-12%. The Cone Penetrometer Test (CPT) shows a resistance value of 20-138 kgf/cm2. The major clay mineral that is predominant in the studied soil is kaolinite. The major oxides present are SiO2, Al2O3, Fe2O3, K2O, Na2O, MgO and CaO. The result of the 2D Electrical Resistivity Imaging revealed a low resistivity values for profile 2 and 3 ranging from 100 Ωm – 300 Ωm, between a distance of 20m – 240 m along the profile to a depth of 7.60m and a low resistivity value ranging from 50 Ωm – 111Ωm, between a distance of 80 m –120 m along the profile to a depth of 15m. It was concluded that the low CBR, low MDD and the class of subsoils namely A-26, A-7, A-2-7 (clayey soils) which were identified are responsible for the cause of failure experienced in the study area. These makes the soils unsuitable as road construction materials and hence, there is need for stabilization during the reconstruction and rehabilitation of the road.


Sign in / Sign up

Export Citation Format

Share Document