Estimation of Mechanical and Tribological Properties of Epoxy-Based Green Composites

Author(s):  
Supriyo Roy ◽  
Sumit Bhowmik ◽  
J. Paulo Davim ◽  
Kaushik Kumar

Composites based on natural fibre reinforcement have generated wide research and engineering interest in the last few decades due to their small density, high specific strength, low cost, light weight, recyclability and biodegradability and has earned a special category of ‘green composite'. Here, in our proposed research, wood dust reinforced epoxy composite was processed with different % filler weight primarily. For this, natural filler based epoxy composite from wood dust is developed and its mechanical behaviour, including Tensile, Flexural, Density etc., under various testing conditions and % of filler weight were studied. These samples were simultaneously tested for abrasive wear and friction coefficient measurement. Microstructure of the composites was studied to analyze the distribution of the filler in the epoxy matrix change using scanning electron microscopy.

Author(s):  
Romildo Dias Tolêdo Filho ◽  
Kuruvilla Joseph ◽  
Khosrow Ghavami ◽  
George Leslie England

ABSTRACT The inclusion of fibre reinforcement in concrete, mortar and cement paste can enhance many of the engineering properties of the basic materials, such as fracture toughness, flexural strength and resistance to fatigue, impact, thermal shock and spalling. In recent years, a great deal of interest has been created worldwide on the potential applications of natural fibre reinforced, cement based composites. Investigations have been carried out in many countries on various mechanical properties, physical performance and durability of cement based matrices reinforced with naturally occurring fibres including sisal, coconut, jute, bamboo and wood fibres. These fibres have always been considered promising as reinforcement of cement based matrices because of their availability, low cost and low consumption of energy. In this review, the general properties of the composites are described in relation to fibre content, length, strength and stiffness. A chronological development of sisal fibre reinforced, cement based matrices is reported and experimental data are provided to illustrate the performance of sisal fibre reinforced cement composites. A brief description on the use of these composite materials as building products has been included. The influence of sisal fibres on the development of plastic shrinkage in the pre-hardened state, on tensile, compressive and bending strength in the hardened state of mortar mixes is discussed. Creep and drying shrinkage of the composites and the durability of natural fibres in cement based matrices are of particular interest and are also highlighted. The results show that the composites reinforced with sisal fibres are reliable materials to be used in practice for the production of structural elements to be used in rural and civil construction. This material could be a substitute asbestos-cement composite, which is a serious hazard to human and animal health and is prohibited in industrialized countries. The production of sisal fibres as compared with synthetic fibres or even with mineral asbestos fibres needs much less energy in addition to the ecological, social and economical benefits.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sekar Sanjeevi ◽  
Vigneshwaran Shanmugam ◽  
Suresh Kumar ◽  
Velmurugan Ganesan ◽  
Gabriel Sas ◽  
...  

AbstractThis investigation is carried out to understand the effects of water absorption on the mechanical properties of hybrid phenol formaldehyde (PF) composite fabricated with Areca Fine Fibres (AFFs) and Calotropis Gigantea Fibre (CGF). Hybrid CGF/AFF/PF composites were manufactured using the hand layup technique at varying weight percentages of fibre reinforcement (25, 35 and 45%). Hybrid composite having 35 wt.% showed better mechanical properties (tensile strength ca. 59 MPa, flexural strength ca. 73 MPa and impact strength 1.43 kJ/m2) under wet and dry conditions as compared to the other hybrid composites. In general, the inclusion of the fibres enhanced the mechanical properties of neat PF. Increase in the fibre content increased the water absorption, however, after 120 h of immersion, all the composites attained an equilibrium state.


2021 ◽  
Vol 11 ◽  
pp. e00722
Author(s):  
Charles Kuranchie ◽  
Abu Yaya ◽  
Yaw Delali Bensah

Author(s):  
Tarun Nanda ◽  
Vishal Singh ◽  
Virender Singh ◽  
Arnab Chakraborty ◽  
Sandeep Sharma

The automobile industry is presently focusing on processing of advanced steels with superior strength–ductility combination and lesser weight as compared to conventional high-strength steels. Advanced high-strength steels are a new class of materials to meet the need of high specific strength while maintaining the high formability required for processing, and that too at reasonably low cost. First and second generation of advanced high-strength steels suffered from some limitations. First generation had high strength but low formability while second generation possessed both strength and ductility but was not cost effective. Amongst the different types of advanced high-strength steels grades, dual-phase steels, transformation-induced plasticity steels, and complex phase steels are considered as very good options for being extended into third generation advanced high-strength steels. The present review presents the various processing routes for these grades developed and discussed by different authors. A novel processing route known as quenching and partitioning route is also discussed. The review also discusses the resulting microstructures and mechanical properties achieved under various processing conditions. Finally, the key findings with regards to further research required for the processing of advanced high-strength steels of third generation have been discussed.


AVIA ◽  
2021 ◽  
Vol 2 (2) ◽  
Author(s):  
A Z Dwi ◽  
H Syamsudin

Hand lay-up method is frequently used by small companies. It is due to its flexibility and low-cost considerations. One of the qualities problems that normally arises is the product unevenness. This study was carried out to analyse this variation on manufacturing E-glass/epoxy plates specimen and propeller product. Void and fibre volume fraction of manufactured plates are measured based on ASTM-D2734. Propellers of LSU-03 aircraft were manufactured and analysed to find out the uniformity of the product in terms of its mass and size. To determine product compatibility with the design, the geometry and the thickness were measured at several points of propeller. In addition to this, a balancing process is carried out to find out the mass balance point.


2021 ◽  
Vol 904 ◽  
pp. 167-173
Author(s):  
Fang Yu Chen ◽  
Ding Feng Ma ◽  
Xiao Ming Zhou

In many structural applications, such as marine, aircraft and so on, structures are designed to withstand high impact loading, because they may be subjected to impact of the projectiles with high velocity [1,2] . Fabrics become good choice to resist impact of ballistic [3] because of light weight and high specific strength .


2021 ◽  
pp. 152808372110575
Author(s):  
Adnan Amjad ◽  
Aslina Anjang Ab Rahman ◽  
Habib Awais ◽  
Mohd Shukur Zainol Abidin ◽  
Junaid Khan

Composite holds great promise for future materials considering its advantages such as excellent strength, stiffness, lightweight, and cost-effectiveness. Due to rising environmental concerns, the research speed gradually changes from synthetic polymer composites to natural fibre reinforced polymer composites (NFRPCs). Natural fibres are believed a valuable and robust replacement to synthetic silicates and carbon-based fibres, along with biodegradability, recyclability, low cost, and eco-friendliness. But the incompatibility between natural fibre and polymer matrices and higher moisture absorption percentage of natural fibre limitise their applications. To overcome these flaws, surface treatment of natural fibre and nanofiller addition have become some of the most important aspects to improve the performance of NFRPCs. This review article provides the most recent development on the effect of different nanofiller addition and surface treatment on the mechanical, thermal, and wetting behaviour of NFRPCs. It concludes that the fibre surface treatment and nanofillers in natural fibre polymer composites positively affect mechanical, thermal and water absorption properties. A systematic understanding in this field covers advanced research basics to stimulate investigation for fabricating NFRPCs with excellent performance.


Author(s):  
Abhinav Shandilya ◽  
Ayush Gupta ◽  
Deepak Verma

The growing awareness about sustainable development, environmental ecology and new legislations has led researchers to focus attention on bio fibres reinforced composites. In this field research has been done on many fibres but fibres such as banana, coir, bagasse, jute have gained importance in the recent decades. The main advantage of the natural fibre based composites materials being their low cost, easy availability, low density, acceptable specific properties, ease of separation, enhanced energy recovery, C02 neutrality, biodegradability and recyclability in nature. The attention is being given to the development of natural fibre composites is to explore value-added application avenues for their use and also for a sustainable and economical use of easily available natural material in hand. Agricultural waste is a very good example of such naturally available material and it can also be used to prepare composite materials for commercial use this has a very significant advantage over other natural fibres as its abundance and because of almost no cost.


Author(s):  
Sanjay Sharma ◽  
Deepak Verma

Increasing concern about global warming and depleting petroleum reserves and the high cost of petroleum products had made scientists to focus more on the use of natural fibres such as rice husk, baggase, coconut husk, hemp, sisal, jute, flax, banana etc. Past decade has shown many efforts to develop composites to replace the Petroleum and other non-decaying material products. Reinforcement with natural fibre in composites has recently gained attention due to low cost, easy availability, low density, acceptable, strength full, stiffness, ease of separation, enhanced energy recovery, biodegradability and recyclable in nature. Natural fibre composites are suitable as wood substitutes in the construction sector. All these have excellent physical, thermal and mechanical properties and can be utilized more effectively in the development of composite materials. In this connection, an investigation has been carried using rice husk, a natural fibre abundantly available in India.


Sign in / Sign up

Export Citation Format

Share Document