Non-Conventional Feedstock and Technologies for Biodiesel Production

Author(s):  
Edith Martinez-Guerra ◽  
Tapaswy Muppaneni ◽  
Veera Gnaneswar Gude ◽  
Shuguang Deng

Increased consumption and energy security issues have led many developed and developing countries to seek methods to produce alternative fuels. Biodiesel is one such high-density alternative fuel that can increase the longevity of transportation fuels. Biodiesel can be produced from a wide range of feedstock using simple process schemes. In the past, edible oils were used as feedstock for biodiesel fuel production; however, use of non-traditional feed stock like waste cooking oil, non-edible oils, animal fats, and algae can make biodiesel production a sustainable process. The high free fatty acids content in the feedstock, longer reaction rates, high energy consumption, and the catalysts used in the conversion process pose some limitations for current biodiesel production. These limitations can be addressed by developing novel process techniques such as microwaves and ultrasound and by developing non-catalytic transesterification methods. Enhancing byproduct recovery seems to be an important strategy to improve the energy footprint and economics of current biodiesel production.

2018 ◽  
Vol 29 (5) ◽  
pp. 732-741 ◽  
Author(s):  
Farah Halek ◽  
Ali Kavousi-Rahim

Biodiesel is a renewable energy resource consisting of the alkyl monoesters of fatty acids obtained from vegetable oils, waste cooking oils, or animal fats. Biodiesel has been noticed recently as an alternative to fossil fuels. Previous studies have shown that biodiesel produces less pollutants compared to diesel fuel. Biodiesel fuel increases the emission of NOx exceptionally. Recently, it has been found that antioxidant addition to biodiesel is a solution to solve the problem. The purpose of this research is to study the effect of antioxidants addition on the emissions of CO, HC, and NOx from biodiesel fuel. Exhaust emissions of an agriculture diesel engine were studied using biodiesel blend with a 500 ppm propyl gallate (PrG) (propyl-3,4,5-trihydroxybenzoate) and butylated hydroxy anisole (BhA) (2-tert-butyl-4-methoxyphenol) as two major antioxidants. Biodiesel used in this research was prepared through NaOH catalyzed transesterification of a waste cooking oil that originally was taken from sunflower oil, with the assistance of ultrasonic homogenizer. After biodiesel production, five blends including neat diesel, B10, B20, B20 + 500 ppm PrG, and B20+ 500 ppm BhA were used as fuel and the emitted gases were analyzed. The results of this work demonstrated that the addition of antioxidants has no significant effect on lowering CO emission, as well as lowering HC; but the addition of antioxidants results in more efficient reduction of NOx emission from diesel exhaust. In general, BhA showed better results compared to PrG.


2015 ◽  
Vol 787 ◽  
pp. 776-781
Author(s):  
V. Venkatesan ◽  
N. Nallusamy

Biodiesel is one of the promising alternative fuels for automotive engines due to the depletion of fossil fuel resources, increasing energy demands and environmental concerns. The biodiesel can be obtained from various bio energy resources such as edible and non-edible vegetable oils and animal fats. However, the use of biodiesel derived from edible oils such as palm oil, sunflower oil and soybean oil has negative impact on global food market. Biodiesel from microalgae is considered as a third generation biofuel derived from non-edible resources and best suited for internal combustion engines. Microalgae have the potential to provide sufficient fuel for global consumption due to its high oil content and fast growing ability. This paper provides a brief overview of biodiesel production from microalgae biomass and its suitability as alternate fuel in diesel engines. This review highlights the selection of suitable algae species for oil production, fuel properties in comparison with standard diesel and other biodiesel fuels, performance, combustion and emission characteristics when used in engines, and the economical aspects. Further, the research and development aspects of biodiesel from microalgae as fuel for automobile diesel engines are also reviewed.


2020 ◽  
pp. 149-159
Author(s):  
Jatinder Kataria ◽  
Saroj Kumar Mohapatra ◽  
Amit Pal

The limited fossil reserves, spiraling price and environmental impact due to usage of fossil fuels leads the world wide researchers’ interest in using alternative renewable and environment safe fuels that can meet the energy demand. Biodiesel is an emerging renewable alternative fuel to conventional diesel which can be produced from both edible and non-edible oils, animal fats, algae etc. The society is in dire need of using renewable fuels as an immediate control measure to mitigate the pollution level. In this work an attempt is made to review the requisite and access the capability of the biodiesel in improving the environmental degradation.


2021 ◽  
Vol 13 (2) ◽  
pp. 788
Author(s):  
Zulqarnain ◽  
Muhammad Ayoub ◽  
Mohd Hizami Mohd Yusoff ◽  
Muhammad Hamza Nazir ◽  
Imtisal Zahid ◽  
...  

Dependence on fossil fuels for meeting the growing energy demand is damaging the world’s environment. There is a dire need to look for alternative fuels that are less potent to greenhouse gas emissions. Biofuels offer several advantages with less harmful effects on the environment. Biodiesel is synthesized from the organic wastes produced extensively like edible, non-edible, microbial, and waste oils. This study reviews the feasibility of the state-of-the-art feedstocks for sustainable biodiesel synthesis such as availability, and capacity to cover a significant proportion of fossil fuels. Biodiesel synthesized from oil crops, vegetable oils, and animal fats are the potential renewable carbon-neutral substitute to petroleum fuels. This study concludes that waste oils with higher oil content including waste cooking oil, waste palm oil, and algal oil are the most favorable feedstocks. The comparison of biodiesel production and parametric analysis is done critically, which is necessary to come up with the most appropriate feedstock for biodiesel synthesis. Since the critical comparison of feedstocks along with oil extraction and biodiesel production technologies has never been done before, this will help to direct future researchers to use more sustainable feedstocks for biodiesel synthesis. This study concluded that the use of third-generation feedstocks (wastes) is the most appropriate way for sustainable biodiesel production. The use of innovative costless oil extraction technologies including supercritical and microwave-assisted transesterification method is recommended for oil extraction.


Author(s):  
Saidat Olanipekun Giwa ◽  
Maku Barbanas Haggai ◽  
Abdulwahab Giwa

In the recent time, there is increasing research in the area of alternative fuels as the exhausts of presently used petroleum-based fuels have been identified to have negative effects on the environment. Fuels produced from plant oils and animal fats have the tendencies of replacing petro fuels since they are renewable in nature. One of these renewable fuels is biodiesel. However, the homogenous catalyst used in biodiesel production has some drawbacks such as difficulty in separation from the fuel, soap formation and corrosiveness of the product mixture. In this work, the use of heterogeneous catalyst sourced from local raw materials (kaolin and eggshell) for the production of biodiesel from oil of desert date seed has been investigated. The kaolin obtained from Alkaleri Mining Site, Bauchi, was calcined in an oven at 800 °C for 3 h. The calcined kaolin was then chemically activated. Also, the eggshell-based catalyst was produced from raw eggshells after washing, drying, grinding, sieving using 0.3 mm sieve size and calcining at 900 °C for 3 h. Furthermore, the oil content of the desert date seed, which was acquired from a local market in Bauchi, was extracted via solvent extraction in a laboratory with a yield of 42%. Then, the biodiesel was subsequently prepared by mixing the oil, methanol and catalyst in a flat bottom flask and heating the mixture for a specified period. The catalyst concentration, methanol to oil ratio and time of reaction were subsequently varied to obtain the best yield. The results obtained revealed that an optimum yield of 29% could be obtained at methanol to oil ratio of 6:1 and a reaction time of 60 min using 1.5 g of eggshell-based catalyst while an optimum yield of 22% was obtained with 0.6 g for kaolin-based catalyst at a reaction time of 60 min and methanol to oil ratio of 4:1. It is recommended that further work should be carried out to improve on the yield of the biodiesel obtained using the heterogeneous catalysts.


REAKTOR ◽  
2018 ◽  
Vol 18 (03) ◽  
pp. 149 ◽  
Author(s):  
Luqman Buchori ◽  
Dinda Labibah Ubay ◽  
Khonsa Syahidah

Biodiesel is one of diesel fuel alternative made from renewable resources such as vegetable oils and animal fats. One of the natural ingredients that can be used as a material in the production of biodiesel is waste cooking oil (WCO). Biodiesel from WCO can be made through a transesterification reaction using a CaO catalyst. Free fatty acid (FFA) content in WCO needs to be reduced by activated charcoal adsorption. This research aims to determine the optimum time of adsorption by activated charcoal that made from salak peel and to determine the effect of transesterification temperature on biodiesel yield. The results showed that the FFA content of WCO decrease from 6.16% to 0.224% with adsorption time is 80 minutes and 10 gram of activated charcoal. Biodiesel yield increase by increasing transesterification temperature. The appropriate temperature is 50oC with 86.40% of yield, 887.2 kg/m3of density, 5.174 mm2/s of kinematic viscosity and acid number 0.421 mg KOH/gram sample. The composition of alkyl ester was obtained 65.54% with a FAAE yield of 56.63%.


2017 ◽  
Vol 13 (3) ◽  
pp. 235
Author(s):  
Ribwar K. Abdulrahman

In recent decade, the demand for fuel as a source of energy has been dramatic. In fact, many oil and gas reservoirs are declining around the world. The use of fossil fuels such as oil, coal, and natural gas is contributing to the phenomenon of global warming. This is because it emits high quantities of carbon dioxide and other greenhouse gases to the atmosphere. Thus, many researchers and energy companies are investigating the production of an environmental friendly fuel that reduces the emission of greenhouse gases. Thus, bio fuel is one of the most obvious alternative sustainable fuels that can be produced from used vegetable oil and animal fats as well. Indeed, it has several advantages. For example, a biodegradable and a renewable energy reduces global warming phenomenon. Thus, this work is an attempt to produce a biodiesel fuel from chicken fat and waste cooking oil. Also, it was found that it is possible to produce biodiesel from chicken fat and waste cooking oils using transesterification reaction method. Furthermore, the process optimization was also adopted; for example, methanol to oil ratio. It has been found that the yield percentages of the produced biodiesel is increased by increasing the amount of methanol. In addition, the maximum conversion to ester could be achieved at methanol: oil ratio about 7:1. at 60 °C.


2014 ◽  
Vol 607 ◽  
pp. 620-624
Author(s):  
Amir Khalid ◽  
Latip Lambosi ◽  
M.M. Lokman ◽  
Bukhari Manshoor ◽  
Izzuddin Zaman ◽  
...  

Stringent emissions regulations and increasing concern on greenhouse emissions are challenging the researcher to find the alternative fuels like biomass and biodiesel. However, the main issue biodiesel fuel (BDF) from waste cooking oil (WCO) is high toxic emission of Nitrogen Oxides (NOx) and particulate matter (PM) in burning process of burner combustion. Thus, the emulsification concept of BDF and water mixing were studied with focusing in controlling of combustion process especially during early stage combustion in order to minimize the harmful emission. This main purpose of this research is to investigate the effects of biodiesel fuel from waste cooking oil on mixture formation and emission in burner system. The mixture formation behavior of BDF-water-air premixing was investigated due to this spray characteristics will contribute in combustion process that predominantly influence to the NOx and PM emission production. Blending of biodiesel ratio was varied from 5vol%(WCO5)-15vol%(WCO15). Water content under emulsified biodiesel was varied up to 15 percent, and equivalence ratio from 0.6 to 2.0. The real spray image of emulsified WCO fuel and different equivalence ratio were captured by optical visualization system together with color digital camera. The images of the spatial distribution of WCO fuel-water-air mixing will be further analyzed compared with the exhaust emission production in order to understand the influences of mixture formation on combustion process and burning process. Increased of water content, promoted fuel-air premixing and spray tip penetration thus predominantly influences to the reduction the exhaust emissions.


2009 ◽  
Vol 6 (s1) ◽  
pp. S485-S495 ◽  
Author(s):  
N. Saifuddin ◽  
A. Z. Raziah ◽  
H. Nor Farah

The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using waste cooking oil with high acid value (poor quality) as feedstock. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes). Further enhancement was achieved by three phase partitioning (TPP) method. The results on the lipase enzyme which was subjected to pH tuning and TPP, indicated remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. The optimized enzyme was used for hydrolysis and 88% of the oil taken initially was hydrolyzed by the lipase. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production. By using a feedstock to methanol molar ratio of 1:15 and a sulphuric acid concentration of 2.5%, a biodiesel conversion of 88% was obtained at 50 °C for an hour reaction time. This hybrid process may open a way for biodiesel production using unrefined and used oil with high acid value as feedstock.


2019 ◽  
Vol 20 (4) ◽  
pp. 21-25
Author(s):  
Marwan Hussien ◽  
Hayder Abdul hameed

Bio-diesel is an attractive fuel fordiesel engines. The feedstock for bio-diesel production is usually vegetable oil, waste cooking oil, or animal fats. This work provides an overview concerning bio-diesel production. Also, this work focuses on the commercial production of biodiesel. The objective is to study the influence of these parameters on the yield of produced. The biodiesel production affecting by many parameters such s alcohol ratio (5%, 10%,15 %, 20%,25%,30%35% vol.), catalyst loading (5,10,15,20,25) g,temperature (45,50,55,60,65,70,75)°C,reaction time (0-6) h, mixing rate (400-1000) rpm. the maximum bio-diesel production yield (95%) was obtained using 20% methanol ratio and 15g biocatalyst at 60°C.


Sign in / Sign up

Export Citation Format

Share Document