scholarly journals Secondary metabolites produced by endophytic fungi: novel antifungal activity of fumiquinone B

2019 ◽  
Vol 41 ◽  
pp. e48785
Author(s):  
Diana Fortkamp Grigoletto ◽  
Ana Maria Lima Correia ◽  
Wolf-Rainer Abraham ◽  
Andre Rodrigues ◽  
Marco Antonio Assis ◽  
...  

Fungi are present in the most diverse environments including the interior of plant tissues, living as endophytes without causing apparent damage. These endophytes are producers of secondary metabolites, also known as natural products, such as fungicides. Here, we evaluated the ethyl acetate fractions obtained from endophytic fungi isolated from plants in the genus Begonia. The fractions were submitted to inhibitory test against the plant pathogens Diaporthe phaseolorum and Colletotrichum gloeosporioides. From the 88 ethyl acetate fractions evaluated, 14.7 % inhibited C. gloeosporioides and 11.3 % inhibited D. phaseolorum. One fungal isolate displaying an active fraction was selected for chemical investigation. The fungus identified as Neopestalotiopsis sp., produced a compound that was active against D. phaseolorum, with a MIC of 312 µg mL-1 (1,695.3 µM). The compound was identified by mass spectrometry and 1H NMR as the known compound fumiquinone B. The results highlight that the endophytes are capable of producing compounds that may be used to control plant pathogens. The compound fumiquinone B is reported for the first time as an antifungal agent against D. phaseolorum, a relevant plant pathogen worldwide. This is also the first report of the production of fumiquinone B by the genus Neopestalotiopsis.

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 379 ◽  
Author(s):  
Dhurva Prasad Gauchan ◽  
Pratistha Kandel ◽  
Astha Tuladhar ◽  
Ashesh Acharya ◽  
Upendra Kadel ◽  
...  

Background: Endophytic fungi are largely underexplored in the discovery of natural bioactive products though being rich sources of novel compounds with promising pharmaceutical potential. In this study, Taxus wallichiana, which has huge medicinal value, was investigated for its endophytic diversity and capability to produce bioactive secondary metabolites by analyzing antioxidant, antimicrobial and cytotoxic properties. Methods: The endophytes were identified by ITS-PCR using genomic DNA samples. The secondary metabolites were extracted by solvent extraction method using ethyl acetate. The antioxidant activity was analyzed by Thin Layer Chromatography, Total Phenol Content (TPC), Total Flavonoid Content (TFC) and DPPH assay, and the antimicrobial activity was analyzed by agar-well diffusion method. Brine shrimp lethality assay was used to analyze the cytotoxicity of the fungal extracts. Results: Out of 16 different Taxus trees sampled from different locations of Dhorpatan, 13 distinctive endophytic fungi were isolated and grouped into 9 different genera: Bjerkandera, Trichoderma, Preussia, Botrytis, Arthrinium, Alternaria, Cladosporium, Sporormiella and Daldinia. The ethyl acetate extracts isolated from three endophytic fungi: Alternaria alternata, Cladosporium cladosporioides and Alternaria brassicae showed significant TPC values of 204±6.144, 312.3±2.147 and 152.7±4.958µg GAE/mg of dry extract, respectively, and TFC values of 177.9±2.911, 644.1±4.202 and 96.38±3.851µg RE/mg of dry extract, respectively. Furthermore, these three extracts showed a dose dependent radical scavenging activity with IC50 concentration of 22.85, 22.15 and 23.001 µg/ml, respectively. The extracts of C. cladosporioides and A. brassicae also showed promising antimicrobial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis with a minimum inhibitory concentration of 250μg/ml for all bacteria. Both the samples showed cytotoxic property against shrimp nauplii with LC50 of 104.2 and 125.9µg/ml, respectively. Conclusions: The crude fungal extracts obtained from endophytes: A. alternata, C. cladosporioides and A. brassicae upon purification and further identification of the bioactive compounds can be a fascinating source for novel pharmaceutical agents.


Author(s):  
Kamana Sahani ◽  
DEEPENDRA THAKUR

Objective: The objective of the present investigation was to perform the Gas Chromatography-mass spectrometry (GCMS) analysis of endophytic fungi Curvularia aeria MTCC-12847 isolated from Tribulus terrestris L. to find out the active compound present in the extract. Methods: The endophytic fungi were isolated from the plant Tribulus Terrestris L., leaf which was cultivated in optimized media for the production of secondary metabolites and was extracted using ethyl acetate. Ethyl acetate extract was used for the Gas Chromatography-mass spectrometry (GCMS) analysis. Results: GC-MS analysis of ethyl acetate extract of endophytic fungi revealed the presence of various secondary metabolites, the highest amount present was Palmitic acid (24.54%) and Lowest was Dimethyl 1-phenyl-7-methyl-1-hydroxy-1,4-dihydronaphthalene-2,3-dicarboxylate (5.76%). Conclusion: The endophytic fungal Curvularia aeria MTCC-12847 extract isolated from the Tribulus terrestris L. shows the presence of various bioactive compounds.


2016 ◽  
Vol 11 (9) ◽  
pp. 1934578X1601100
Author(s):  
Sakon Monggoot ◽  
Jariya Burawat ◽  
Patcharee Pripdeevech

A total of 17 endophytic fungal isolates were obtained from the leaves of Mentha cordifolia Opiz (Lamiaceae). Seven isolates were identified to the level of genus by using taxonomically relevant morphological traits. Colletotrichum and Phomopsis species were dominant among these strains. All strains were separated from M. cordifolia leaf for the first time. The ethyl acetate extracts of all endophytic fungi were tested for antibacterial activity against Salmonella typhimurium TISTR1166 and Pseudomonas aeruginosa TISTR781. Most endophytes exhibited antibacterial activity. Ustilago sp. MFLUCC15-1024 presented the highest inhibition zone diameter with a MIC of 31.25 μg/mL against the tested pathogens. The chemical composition of the ethyl acetate extract of this strain was investigated using gas chromatography-mass spectrometry. Twenty-one components were identified. 2-Phenylethanol (38.7%), E-ligustilide (12.4%), α-eudesmol (10.2%), β-vetivone (4.6%), β-ylangene (3.7%) and verbanol (3.4%) were the major components of the extract. The strong antibacterial activity of Ustilago sp. MFLUCC15-1024 ethyl acetate extract may be attributed to the presence of a high concentration of bioactive compounds including phenyl ethyl alcohol, E-ligustilide and α-eudesmol. The results indicate that there is high diversity of endophytic fungi in M. cordifolia leaf, and that Ustilago sp. MFLUCC15-1024 strain could be an excellent resource of natural antibacterial compounds.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 231
Author(s):  
Xiao-Yu Song ◽  
Huihua Wang ◽  
Fei Ren ◽  
Kaiying Wang ◽  
Guiming Dou ◽  
...  

Volatile organic compounds (VOCs) from endophytic fungi are becoming a potential antibiotic resource. The inhibitive effects of VOCs produced by an endophytic fungus in Leucaena leucocephala were investigated on plant pathogens in this study. Using standard morphological methods and multigene phylogeny, the fungus was identified as Diaporthe apiculatum strain FPYF 3052. Utilizing a two- compartment Petri plate bioassay method, the VOCs from this fungus showed bioactivity ranging from 23.8% to 66.7% inhibition on eight plant pathogens within 24 hours. The SPME-GC/MS technique identified fifteen volatile compounds with dominant terpenoids γ-terpinene (39.8%), α-terpinene (17.2%), and (-)-4-terpineol (8.4%) from the VOCs. Commercial α-terpinene, γ-terpinene, and (-)-4-terpineol demonstrated inhibition on the tested pathogens at concentrations from 0.2 to 1.0 µl/ml within 72 h in the bioassay system. The inhibition rates were from 28% to 100% percent using 1.0 µl/ml within 48 h. (-)-4-Terpineol was the most active of the terpenoids causing up to 100% inhibition. The data illustrate that these monoterpenes play an important role in the inhibitive bioactivity of the VOCs of D. apiculatum FPYF 3052. Most importantly, (-)-4-terpineol is now for the first time, reported to have capability of strong antifungal activity and could be developed as an antibiotic substance.


Author(s):  
Shirly Kumala ◽  
Ng Vini Aprilia ◽  
Partomuan Simanjuntak

Objective: Colletotrichium capsici endophytic fungi isolated from Jamblang plant (Eugenia cumini  L).  The secondary metabolites of this plant has the potent antibacterial efficacy  as well as diarrheal and anti-diabetic. This research focussed on isolation of the endophytic microbes from branches of Jamblang plants and their secondary metabolites.Methods: Isolation of endophytes were performed in PDA(potato dextrose agar) using direct seed plant. Endophytic fungi isolates with strongest antimicrobial activity against the bacteria Staphylococcus aureus, Escherichia coli were fermented in Potato Dextrose Yeast (PDY) to produce  large scale of the metabolites.  Supernatant was extracted with ethyl acetate solvent. Ethyl acetate extract fractionated by column chromatography (SiO3, n-hexane- ethyl acetate = 50:1 ~ 1:1) and obtained three fractions. Further, agar diffusion method was performed to assess their anti-microbial activity.Results:  Antibacterial  test  results  indicated that fraction III had  the antibacterial  activity Staphylococcus aureus with  inhibition zone diameter  of 10.7 mm but no observed antibacterial activity against Escherichia coli.  Furthermore, identification  by GC-MS showed that compounds present in fraction III was mainly fatty acid and phenolic compounds.Conclusion:  In conclusion, secondary metabolites isolated from Jamblang plants branches contained predominantly fatty acid and phenol related compounds that could be responsible for its potent anti microbial activity. Keywords : Endophytic fungi, Jamblang (Eugenia cumini L.), antimicrobial activity


Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2521 ◽  
Author(s):  
Larissa Silva ◽  
Jovelina Alves ◽  
Emerson da Silva Siqueira ◽  
Manoel de Souza Neto ◽  
Lucas Abreu ◽  
...  

Genipa americana is a medicinal plant popularly known as “jenipapo”, which occurs in Brazil and belongs to the Rubiaceae family. It is a species widely distributed in the tropical Central and South America, especially in the Cerrado biome. Their leaves and fruits are used as food and popularly in folk medicine to treat anemias, as an antidiarrheal, and anti-syphilitic. Iridoids are the main secondary metabolites described from G. americana, but few studies have been conducted with their leaves. In this study, the aim was to chemical approach for identify the main compounds present at the extract of G. americana leaves. The powdered leaves were extracted by maceration with EtOH: water (70:30, v/v), following liquid-liquid partition with petroleum ether, chloroform, ethyl acetate and n-butanol. A total of 13 compounds were identified. In addition three flavonoids were isolated from the ethyl acetate fraction: quercetin-3-O-robinoside (GAF 1), kaempferol-3-O-robinoside (GAF 2) and isorhamnetin-3-O-robinoside (GAF 3) and, from n-butanol fraction more two flavonoids were isolated, kaempferol-3-O-robinoside-7-O-rhamnoside (robinin) (GAF 4) and isorhamnetin-3-O-robinoside-7-rhamnoside (GAF 5). Chemical structures of these five flavonoids were elucidated using spectroscopic methods (MS, 1H and 13C-NMR 1D and 2D). These flavonoids glycosides were described for the first time in G. americana.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Necdet Camas ◽  
Jolita Radusiene ◽  
Zydrunas Stanius ◽  
Omer Caliskan ◽  
Cuneyt Cirak

In the present study, the presence of the phloroglucinol derivative hyperforin, the naphthodianthrones hypericin and pseudohypericin, the phenylpropane chlorogenic acid and the flavonoids rutin, hyperoside, kaempferol, isoquercetine, quercitrine, and quercetine was investigated inHypericum leptophyllumHochst., an endemic Turkish species for the first time. The aerial parts representing a total of 30 individuals were collected at full flowering and dissected into floral, leaf, and stem tissues. After being dried at room temperature, the plant materials were assayed for secondary metabolite concentrations by HPLC. Aerial plant parts accumulated chlorogenic acid, hyperoside, isoquercetine, quercitrine, and quercetine, but they did not accumulate hyperforin, hypericin, pseudohypericin, rutin, and kaempferol. Accumulation levels of the detected compounds varied with plant tissues. Such kind of data could be useful for elucidation of the chemotaxonomical significance of the corresponding compounds and phytochemical evaluation of this endemic species.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 379
Author(s):  
Dhurva Prasad Gauchan ◽  
Pratistha Kandel ◽  
Astha Tuladhar ◽  
Ashesh Acharya ◽  
Upendra Kadel ◽  
...  

Background: Endophytic fungi are largely underexplored in the discovery of natural bioactive products though being rich sources of novel compounds with promising pharmaceutical potential. In this study, Taxus wallichiana, which has huge medicinal value, was investigated for its endophytic diversity and capability to produce bioactive secondary metabolites by analyzing antioxidant, antimicrobial and cytotoxic properties. Methods: The endophytes were identified by ITS-PCR using genomic DNA samples. The secondary metabolites were extracted by solvent extraction method using ethyl acetate. The antioxidant activity was analyzed by Thin Layer Chromatography, Total Phenol Content (TPC), Total Flavonoid Content (TFC) and DPPH assay, and the antimicrobial activity was analyzed by agar-well diffusion method. Brine shrimp lethality assay was used to analyze the cytotoxicity of the fungal extracts. Results: Out of 16 different Taxus trees sampled from different locations of Dhorpatan, 13 distinctive endophytic fungi were isolated and grouped into 9 different genera: Bjerkandera, Trichoderma, Preussia, Botrytis, Arthrinium, Alternaria, Cladosporium, Sporormiella and Daldinia. The ethyl acetate extracts isolated from three endophytic fungi: Alternaria alternata, Cladosporium cladosporioides and Alternaria brassicae showed significant TPC values of 204±6.144, 312.3±2.147 and 152.7±4.958µg GAE/mg of dry extract, respectively, and TFC values of 177.9±2.911, 644.1±4.202 and 96.38±3.851µg RE/mg of dry extract, respectively. Furthermore, these three extracts showed a dose dependent radical scavenging activity with IC50 concentration of 22.85, 22.15 and 23.001 µg/ml, respectively. The extracts of C. cladosporioides and A. brassicae also showed promising antimicrobial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis with a minimum inhibitory concentration of 250μg/ml for all bacteria. Both the samples showed cytotoxic property against shrimp nauplii with LC50 of 104.2 and 125.9µg/ml, respectively. Conclusions: The crude fungal extracts obtained from endophytes: A. alternata, C. cladosporioides and A. brassicae upon purification and further identification of the bioactive compounds can be a fascinating source for novel pharmaceutical agents.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0250954
Author(s):  
Maria da Luz Calado ◽  
Joana Silva ◽  
Celso Alves ◽  
Patrícia Susano ◽  
Débora Santos ◽  
...  

Marine fungi and, particularly, endophytic species have been recognised as one of the most prolific sources of structurally new and diverse bioactive secondary metabolites with multiple biotechnological applications. Despite the increasing number of bioprospecting studies, very few have already evaluated the cosmeceutical potential of marine fungal compounds. Thus, this study focused on a frequent seaweed in the Portuguese coast, Halopteris scoparia, to identify the endophytic marine fungi associated with this host, and assess their ability to biosynthesise secondary metabolites with antioxidative, enzymatic inhibitory (hyaluronidase, collagenase, elastase and tyrosinase), anti-inflammatory, photoprotective, and antimicrobial (Cutibacterium acnes, Staphylococcus epidermidis and Malassezia furfur) activities. The results revealed eight fungal taxa included in the Ascomycota, and in the most representative taxonomic classes in marine ecosystems (Eurotiomycetes, Sordariomycetes and Dothideomycetes). These fungi were reported for the first time in Portugal and in association with H. scoparia, as far as it is known. The screening analyses showed that most of these endophytic fungi were producers of compounds with relevant biological activities, though those biosynthesised by Penicillium sect. Exilicaulis and Aspergillus chevalieri proved to be the most promising ones for being further exploited by dermocosmetic industry. The chemical analysis of the crude extract from an isolate of A. chevalieri revealed the presence of two bioactive compounds, echinulin and neoechinulin A, which might explain the high antioxidant and UV photoprotective capacities exhibited by the extract. These noteworthy results emphasised the importance of screening the secondary metabolites produced by these marine endophytic fungal strains for other potential bioactivities, and the relevance of investing more efforts in understanding the ecology of halo/osmotolerant fungi.


2014 ◽  
Vol 5 (2) ◽  
Author(s):  
Widya Lestari

Endophytic fungi are a group of fungi whose part or whole life is in living plant tissue and usually does not harm the host. Endophytic fungi generally produce secondary metabolites that have beneficial biological activities such as anti-cancer compounds, antifungi or antibacterials. Control of plant diseases caused by Rigidoporus microporus and Ganoderma boninense can be done by using biological agents, namely by using endophytic fungi. This fungus has metabolite compounds that can inhibit the growth of Rigidoporus microporus and Ganoderma boninense. This study aims to determine what content is found in endophytic mushroom extracts isolated from rubber plants (Hevea brasiliensis). Endophytic fungi are extracted by maceration using methanol and ethyl acetate solvents. The extract was tested for antifungal activity using diffusion method. The content of secondary metabolites was tested by phytochemical test. The results of endophytic fungal extraction with methanol and ethyl acetate solvents resulted in antifungal activity with inhibitory zones in a row namely WL01: 2.19 and 2.15 mm Fungi Isolates on Ganoderma boninense while 3.09 mm WL02 against Rigidoporus microporus Based on the phytochemical test results, endophytic fungal extract with methanol and ethyl acetate solvents showed the presence of alkaloid, flavonoid, phenol and saponin. Keywords: endofit, fungi, hevea, secondary metabolites


Sign in / Sign up

Export Citation Format

Share Document