Luffa Sponge as a Sustainable Engineering Material

2012 ◽  
Vol 238 ◽  
pp. 3-8 ◽  
Author(s):  
Jian Hu Shen ◽  
Mike Xie ◽  
Xiao Dong Huang ◽  
Shi Wei Zhou ◽  
Dong Ruan

The paper presents the first scientific study of the stiffness, strength and energy absorption characteristics of the luffa sponge with a view to using it as an alternative sustainable engineering material for various practical applications. A series of compression tests on luffa sponge columns have been carried out. The stress-strain curves show a near constant plateau stress over a long strain range, which is ideal for energy absorption applications. It is found that the luffa sponge material exhibits remarkable stiffness, strength and energy absorption capacity that are comparable to those of some commonly-used metallic cellular materials. These properties are due to its light-weight base material, and its structural hierarchy at several length scales. Empirical formulae have been developed for stiffness, strength, densification strain and specific energy absorption at the macroscopic level by considering the luffa fiber as the base material. A comparative study shows that the luffa sponge material outperforms a variety of traditional engineering materials.

2010 ◽  
Vol 638-642 ◽  
pp. 61-66 ◽  
Author(s):  
Joachim Baumeister

Aluminium foams produced according to the powder metallurgical/foaming agent process are currently being used in several industrial sectors, such as automotive, rail transport or machine tools. Nevertheless there still is a high further application potential to be exploited. Especially in hybrid structures, e.g. in automotive structures that are locally filled with aluminium foam, great improvements regarding the energy absorption capacity and the sound absorption behaviour can be obtained. In the present paper several methods that allow for filling or local filling of hollow structures are investigated and presented. The effect of the foam filling on the energy absorption behaviour of the hybrid structure is discussed. Similar effects were also observed in compression tests on foam filled hollow profiles. The results of these investigations are presented.


Author(s):  
D. Tankara ◽  
R. Moradi ◽  
Y. Y. Tay ◽  
H. M. Lankarani

Over the past few decades, much research work has been conducted on the development of advance crashworthy structures to increase the energy absorption of mechanical systems. Thin-walled tubes are primarily used as structural reinforcements and as energy absorbing components. The high-energy absorption characteristics of cellular foams have attracted great attention to further enhance this superior capability. In particular, nanotechnology has been utilized in the development of advanced cellular materials for the automotive and aerospace industry. The primary objective of this study is to conduct a parametric study using experimental and finite element methods to examine and quantify the performances of thin-walled tube when filled with carbon nano particulates. To accomplish this study, compression tests are carried out to obtain the load-deflection curves of the nano-foams when subjected to different weight percentages of carbon nano fibers. Next, the specific energy absorbed and the collapse mechanism of nano foam filled thin-walled tubes are analyzed and compared with the empty ones. Finally, an illustrative study on the use of nano foams for vehicular applications is presented by using a vehicle bumper numerical model. The carbon nano foam is installed into the cavity of the bumper model and a full-frontal crash simulation is performed. Overall, this study has shown that the energy absorption capacity of thin-walled structures can be significantly enhanced with the use of carbon nano foams.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yusuke Kurihashi ◽  
Naochika Kogure ◽  
Shin-ichi Nitta ◽  
Masato Komuro

In recent years, there has been a continuous increase in the intensity of natural disasters. Slope disasters such as rock falls occur along coastlines and in mountainous regions. Rock shed structures are implemented as measures to prevent rock fall damage; however, these structures deteriorate over time, and their impact resistance also decreases. As a supplementary measure, a method employing foam material as a cushioning material has been used in practical applications. However, the effect of the compressive strength characteristics on the cushioning performance of foamed materials has not been studied thus far. Therefore, in this study, falling-weight impact-loading tests involving various fall heights were performed to examine the absorption performance of various expanded materials. Moreover, we examined the case where core slabs were layered to effectively exploit the absorption performance of the expanded materials. The results of this study are summarized as follows: (1) the transmitted impact penetration stress-strain curves right under the loading points of various expanded materials exhibit properties similar to those obtained from the results of material testing. However, in the case of expanded materials with high compressive strengths, the compressive stress from the results of material testing tends to be lower. (2) In the case of expanded materials with high compressive strengths, with and without core slabs, the distribution of the transmitted impact stress is large, and the energy absorption capacity is high. (3) In this experiment, the energy absorption capacity was found to double when core slabs are layered, regardless of the type of expanded material used. This suggests that expanded materials with high compressive strengths may contribute towards a higher improvement in energy absorption capacities, by using layered core slabs.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2235
Author(s):  
Rahib A. Khan ◽  
Elsadig Mahdi ◽  
John J. Cabibihan

In this study, glass fibre reinforced (GFRP) polyvinyl chloride (PVC) tubes were subjected to quasi-static axial compression tests to determine their crashworthiness performance. To this end, this study employed GFRP/PVC tubes with four different fibre orientations, 45°, 55°, 65° and 90°. A five-axis filament winding machine was used to fabricate the tubes. The results show that there was a considerable increase in all crashworthiness characteristics due to GFRP reinforcement. For the GFRP/PVC composite tubes of different fibre orientations, the load-bearing capacity, crush force efficiency and energy absorption capability generally improve with increasing fibre orientation. The GFRP/PVC 45° specimen was a notable exception as it exhibited the best specific energy absorption capacity and a crushing force efficiency that was only slightly less than for the GFRP/PVC 90° specimen.


2018 ◽  
Vol 8 (6) ◽  
pp. 3640-3645
Author(s):  
T. Sunar ◽  
M. Cetin

Light structures and parts are very effective for new engineering applications. Their considerably low densities, high energy absorption capabilities, and desirable mechanical properties make them useful for particularly automotive, defense and aerospace industries. Besides these positive properties, it is known that the production and processing of cellular materials is very tough and worth the effort. Recently, with advances in new technologies like 3D printing or selective laser melting, now different types of cellular materials can be produced. But manufacturing of metallic foams via casting especially replication or infiltration method is fairly an economic method when compared with other methods. In this study, vacuum-gas infiltration set-up was used to produce B4C reinforced aluminum foams. The mentioned method involves the addition of space holder materials and a dissolution technique to remove them after solidification of the metal. As space holder materials NaCl particles were selected and mixed with B4C powders to produce B4C reinforced A360 aluminum foam. By changing the weight ratio of B4C particles, the alteration of properties like porosity, compression strength, and energy absorption capacity was investigated. Additionally, computer tomography views were obtained to see and interpret the microstructures of the foams. Compression tests were carried out to evaluate the mechanical behavior of the foams under static loading. The porosities of samples obtained as between 65-75%. The compressive strength increased with rising relative density.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4410
Author(s):  
Zhou Wen ◽  
Ming Li

Bionic design is considered a promising approach to improve the performance of lattice structures. In this work, bamboo-inspired cubic and honeycomb lattice structures with graded strut diameters were designed and manufactured by 3D printing. Uniform lattice structures were also designed and fabricated for comparison. Quasi-static compression tests were conducted on lattice structures, and the effects of the unit cell and structure on the mechanical properties, energy absorption and deformation mode were investigated. Results indicated that the new bionic bamboo structure showed similar mechanical properties and energy absorption capacity to the honeycomb structure but performed better than the cubic structure. Compared with the uniform lattice structures, the functionally graded lattice structures showed better performance in terms of initial peak strength, compressive modulus and energy absorption.


2017 ◽  
Vol 09 (05) ◽  
pp. 1750066 ◽  
Author(s):  
C. H. Zhou ◽  
B. Wang ◽  
H. Z. Luo ◽  
Y. W. Chen ◽  
Q. H. Zeng ◽  
...  

The origami crash box has been recognized as an efficient energy absorption device. In this paper, quasi-static axial compression tests and numerical simulations are carried out to investigate the energy absorption capacity of origami crash box. The complete diamond mode could be successfully triggered, which indicates that this collapse mode is insensitive to geometric imperfection when the tube is subjected to quasi-static loading. And the results confirm that axially compressed tubes with longer modules ([Formula: see text]) renders higher mean crushing force than those with short modules ([Formula: see text]). Moreover, in order to figure out the energy dissipation percentage of each region in origami crash box, the plastic deformation of shells in two representative regions is measured and analyzed by utilizing electrical measurement and noncontact optical measurement. The results reveal that about 10% of total energy is absorbed by those shells, which is large enough to affect the prediction accuracy of expressions deduced by super folding element theory.


2020 ◽  
Vol 64 (2) ◽  
pp. 172-178
Author(s):  
Muhammad Ail Naeem ◽  
András Gábora ◽  
Tamás Mankovits

The important properties of metallic foams such as good energy absorption, recyclability, noise absorption, etc. have put them at the forefront of technological development over recent years, especially for fields where the weight is a major concern. The production however, is a highly stochastic process which leads to their inhomogeneous nature. In this paper closed-cell aluminum foam specimens have been produced by direct foaming technique and investigated mechanically, following the principles of Taguchi Design of Experiments (DOE). The important compressive properties of the produced specimens such as the structural stiffness, yield strength, plateau stress and energy absorption have been measured through uniaxial compression tests and the effect of the manufacturing parameters (the temperature, the mixing speed and the amount of foaming agent added) on the energy absorption capacity of the foam is analyzed. From experiments, it was observed that the temperature is the most dominant control factor for the energy absorption capability of the foam followed by the foaming content and the mixing speed. ANOVA statistical analysis was also performed to determine the statistical significance of these parameters on the response.


2020 ◽  
Vol 10 (7) ◽  
pp. 2584 ◽  
Author(s):  
Yong Xie ◽  
Hailong Bai ◽  
Zhenghao Liu ◽  
Nanning Chen

The luffa sponge shows excellent cushion properties. This paper presents a bio-inspired structure of the luffa sponge. The geometry of the bionic structure was built based on the fractal theory by Python programming language and prepared by a 3D printer. Then a series of quasi-static compression tests and finite element analysis were carried out to determine the cushion properties. An optimization design was adopted to determine the best design parameter. The results showed that the influence of length ( a ) on specific energy absorption was more important than the degree ( θ ). The best parameter was found to be length less than 4 mm and angle around 11 degrees. The bionic structure of luffa sponge may show a novel perspective on natural cellular material. The findings demonstrate the great potential for designing hierarchical cellular structures and broad application prospects in the field of cushioning and energy absorption.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 213 ◽  
Author(s):  
Judyta Sienkiewicz ◽  
Paweł Płatek ◽  
Fengchun Jiang ◽  
Xiaojing Sun ◽  
Alexis Rusinek

The main aim of the paper is to evaluate the mechanical behavior or lattice specimens subjected to quasi-static and dynamic compression tests. Both regular and three different variants of SS 316L lattice structures with gradually changed topologies (discrete, increase and decrease) have been successfully designed and additively manufactured with the use of the selective laser melting technique. The fabricated structures were subjected to geometrical quality control, microstructure analysis, phase characterization and compression tests under quasi-static and dynamic loading conditions. The mismatch between dimensions in the designed and produced lattices was noticed. It generally results from the adopted technique of the manufacturing process. The microstructure and phase composition were in good agreement with typical ones after the additive manufacturing of stainless steel. Moreover, the relationship between the structure relative density and its energy absorption capacity has been defined. The value of the maximum deformation energy depends on the adopted gradient topology and reaches the highest value for a gradually decreased topology, which also indicates the highest relative density. However, the highest rate of densification was observed for a gradually increasing topology. In addition, the results show that the gradient topology of the lattice structure affects the global deformation under the loading. Both, static and dynamic loading resulted in both barrel- and waisted-shaped deformation for lattices with an increasing and a decreasing gradient, respectively. Lattice specimens with a gradually changed topology indicate specific mechanical properties, which make them attractive in terms of energy absorption applications.


Sign in / Sign up

Export Citation Format

Share Document